卷积神经网络
背景(考古学)
计算机科学
任务(项目管理)
自然语言处理
人工智能
放射性武器
放射科
医学
工程类
生物
古生物学
系统工程
作者
Pilar López-Úbeda,Teodoro Martín‐Noguerol,Alfredo Escartín,Antonio Luna
标识
DOI:10.1016/j.acra.2024.07.057
摘要
Large Language Models can capture the context of radiological reports, offering high accuracy in detecting unexpected findings. We aim to fine-tune a Robustly Optimized BERT Pretraining Approach (RoBERTa) model for the automatic detection of unexpected findings in radiology reports to assist radiologists in this relevant task. Second, we compared the performance of RoBERTa with classical convolutional neural network (CNN) and with GPT4 for this goal.
科研通智能强力驱动
Strongly Powered by AbleSci AI