Sensitive Phenotyping of Serum Extracellular Vesicles on a SERS-Microfluidic Platform for Early-Stage Clinical Diagnosis of Ovarian Carcinoma

细胞外小泡 阶段(地层学) 卵巢癌 卵巢癌 生物标志物 内科学 癌症研究 医学 生物 生物化学 癌症 细胞生物学 古生物学
作者
Xingya Chen,Jingshi Tang,Yueyue Zhao,Rui Wang,Shenggang Sang,Fabiao Yu,Yanlong Xing
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:267: 116724-116724 被引量:7
标识
DOI:10.1016/j.bios.2024.116724
摘要

Ovarian carcinoma (OvCa) poses a severe threat to women's health due to its high mortality rate and lack of efficient early diagnosis approach. There is evidence to suggest that nanosized small extracellular vesicles (sEVs) which carrying cell-specific components from OvCa can serve as potential diagnostic biomarkers. Herein, we reported a Surface-enhanced Raman Scattering (SERS)-multichannel microchip for sEVs (S-MMEV) assay to investigate the phenotype changes of sEVs. The microchip composed of seven microchannels, which enabled the parallel detection of multiple biomarkers to improve the detection accuracy. Using SERS probes conjugated with antibodies recognizing different biomarkers including ubiquitous EV biomarkers (i.e., tetraspanins; CD9, CD81) and putative OvCa tumor biomarkers (i.e. EpCAM, CD24, CA125, EGFR), we successfully analyzed the phenotypic changes of sEVs and accurately differentiated OvCa patients from healthy controls, even at early stage (I-II), with high sensitivity, high specificity and an area under the curve value of 0.9467. Additionally, the proposed approach exhibited higher sensitivity than conventional methods, demonstrating the efficiency of precise detection from cell culture and clinical samples. Collectively, the developed EV phenotyping approach S-MMEV could serve as a potential tool to achieve the early clinical diagnosis of OvCa for further precise diagnosis and personal treatment monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anar发布了新的文献求助10
1秒前
单纯的自行车完成签到,获得积分10
1秒前
WYX完成签到 ,获得积分10
1秒前
烟花应助迷路的鸽子采纳,获得30
2秒前
健忘道天完成签到,获得积分10
2秒前
2秒前
dskwei完成签到 ,获得积分10
3秒前
YANA完成签到,获得积分10
3秒前
大个应助戈尔德尔采纳,获得10
3秒前
淳之风发布了新的文献求助10
3秒前
义气的咖啡豆完成签到,获得积分10
4秒前
今后应助话语采纳,获得10
4秒前
CipherSage应助话语采纳,获得10
4秒前
4秒前
英姑应助liangmh采纳,获得10
4秒前
6秒前
6秒前
科研通AI5应助爬不起来采纳,获得10
8秒前
edtaa完成签到 ,获得积分10
8秒前
墨子白完成签到,获得积分10
8秒前
9秒前
田様应助结实星星采纳,获得10
9秒前
9秒前
打打应助淳之风采纳,获得10
10秒前
Anar完成签到,获得积分10
10秒前
酷波er应助不知名选手采纳,获得10
11秒前
科研通AI5应助贪玩海之采纳,获得10
11秒前
玺青一生发布了新的文献求助10
11秒前
田様应助淡淡的航空采纳,获得10
12秒前
谢谢各位老师啦完成签到,获得积分10
12秒前
机智若山发布了新的文献求助10
12秒前
初夏发布了新的文献求助10
13秒前
13秒前
隐形曼青应助Jessie采纳,获得10
13秒前
李健应助wxy采纳,获得10
14秒前
万能图书馆应助阿飘采纳,获得10
14秒前
田様应助聋哑时代采纳,获得10
16秒前
Orange应助橘子采纳,获得10
17秒前
green完成签到,获得积分10
17秒前
爆米花应助tom采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 3000
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726798
求助须知:如何正确求助?哪些是违规求助? 3271871
关于积分的说明 9973962
捐赠科研通 2987190
什么是DOI,文献DOI怎么找? 1638782
邀请新用户注册赠送积分活动 778295
科研通“疑难数据库(出版商)”最低求助积分说明 747549