阳极
材料科学
电场
锌
纳米技术
枝晶(数学)
制作
水溶液
箔法
化学工程
复合材料
冶金
化学
电极
有机化学
数学
替代医学
病理
物理
物理化学
量子力学
工程类
医学
几何学
作者
Jiahui Ye,Wen Tian,Yuping Du,Shaoyong Linghu,Kaixiang Wang,Yuan Li,Hongjiao Li,Junyi Ji
出处
期刊:Small
[Wiley]
日期:2024-09-30
标识
DOI:10.1002/smll.202405891
摘要
Abstract The stability of aqueous zinc metal anodes is still constrained by their severe dendrite growth. Optimizing electric field distribution and crystallography to modulate the diffusion and deposition behavior of zinc ions can effectively suppress dendrite growth. However, the fabrication strategy to directly endow specific textured zinc anodes with gradient electric field distribution is still lacking. Herein, a strategy combining crystal reconstruction of commercial zinc foil with graphene oxide (GO) protective layer is proposed to construct an in situ gradient electric field‐enhanced strong (002) textured GO@ZnO/Zn(002) anode. Based on the experimental and theoretical results, the GO protective layer can regulate a wide‐range homogeneous Zn 2+ ions flow, while the dense and uniform ZnO/Zn(002) nanoneedles /nanoparticles can enhance localized polarized electric field to accelerate rapid localized transfer of Zn 2+ ions and guide them toward directional deposition along (002) plane. Therefore, the hierarchical GO@ZnO/Zn(002) anode enables the symmetric cell to operate continuously and stably for 5700 and 4200 h at 2 and 4 mA cm −2 , respectively, which is comparable to or better than most high‐end Zn anodes. This work presents new insights into the zinc foil reconstruction and gradient electric field fabrication strategy, offering a scalable approach for the development of long‐term stable metal anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI