Adaptive Multi-Feature Attention Network for Image Dehazing

特征(语言学) 计算机科学 人工智能 计算机视觉 图像(数学) 模式识别(心理学) 语言学 哲学
作者
Hongyuan Jing,Jiaxing Chen,Chenyang Zhang,Shuang Wei,Aidong Chen,Mengmeng Zhang
出处
期刊:Electronics [MDPI AG]
卷期号:13 (18): 3706-3706
标识
DOI:10.3390/electronics13183706
摘要

Currently, deep-learning-based image dehazing methods occupy a dominant position in image dehazing applications. Although many complicated dehazing models have achieved competitive dehazing performance, effective methods for extracting useful features are still under-researched. Thus, an adaptive multi-feature attention network (AMFAN) consisting of the point-weighted attention (PWA) mechanism and the multi-layer feature fusion (AMLFF) is presented in this paper. We start by enhancing pixel-level attention for each feature map. Specifically, we design a PWA block, which aggregates global and local information of the feature map. We also employ PWA to make the model adaptively focus on significant channels/regions. Then, we design a feature fusion block (FFB), which can accomplish feature-level fusion by exploiting a PWA block. The FFB and PWA constitute our AMLFF. We design an AMLFF, which can integrate three different levels of feature maps to effectively balance the weights of the inputs to the encoder and decoder. We also utilize the contrastive loss function to train the dehazing network so that the recovered image is far from the negative sample and close to the positive sample. Experimental results on both synthetic and real-world images demonstrate that this dehazing approach surpasses numerous other advanced techniques, both visually and quantitatively, showcasing its superiority in image dehazing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助阿辉采纳,获得10
刚刚
帅帅杰发布了新的文献求助10
1秒前
Min完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
Akim应助kaoru采纳,获得10
2秒前
顺心火龙果完成签到,获得积分10
2秒前
3秒前
机灵的妙芹完成签到,获得积分20
3秒前
3秒前
Bruce给Bruce的求助进行了留言
3秒前
好运连连发布了新的文献求助10
3秒前
3秒前
Battery-Li发布了新的文献求助150
3秒前
Lucas应助彩色的过客采纳,获得10
4秒前
ller发布了新的文献求助10
4秒前
七瑾完成签到,获得积分10
6秒前
迅速泽洋发布了新的文献求助30
6秒前
6秒前
无奈的安柏完成签到 ,获得积分10
6秒前
小蘑菇应助阿军采纳,获得10
6秒前
7秒前
小小怪夏士完成签到,获得积分10
7秒前
小武完成签到,获得积分10
8秒前
cfmanman发布了新的文献求助15
8秒前
景秋灵完成签到,获得积分10
8秒前
晴空完成签到,获得积分10
8秒前
8秒前
9秒前
科研通AI6应助做好自己采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
轻松豁完成签到,获得积分10
11秒前
七瑾发布了新的文献求助10
11秒前
yukang完成签到,获得积分10
11秒前
帅帅杰完成签到,获得积分10
12秒前
12秒前
Nina发布了新的文献求助10
13秒前
曾丹么么哒完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656