真菌
亚油酸
KEAP1型
化学
生物
生物化学
植物
脂肪酸
基因
转录因子
作者
Chenyan Wu,Yue Chen,Mengting Chen,Tingting Fu,Jin Liu,Fei‐Fei Liu,Congjun Xu,Wan‐Shan Li,B. Li,Zhong‐Ping Jiang,Yong Rao,Ling Huang
标识
DOI:10.1016/j.freeradbiomed.2024.09.019
摘要
Ectopic lipid accumulation induced lipotoxicity plays a crucial role in exacerbating the development of metabolic dysfunction-associated steatotic liver disease (MASLD), which affects over 30% of the worldwide population and 85% of the obese population. The growing demand for effective therapeutic agents highlights the need for high-efficacy lipotoxicity ameliorators and relevant therapeutic targets in the fight against MASLD. This study aimed to discover natural anti-lipotoxic and anti-MASLD candidates and elucidate the underlying mechanism and therapeutic targets. Utilizing palmitic acid (PA)-induced HepG-2 and primary mouse hepatocyte models, we identified linoleic acid (HN-002), a ligand of fatty acid binding protein 4 (FABP4), from the marine fungus Eutypella sp. F0219. HN-002 dose-dependently prevented lipid overload-induced hepatocyte damage and lipid accumulation, inhibited fatty acid esterification, and ameliorated oxidative stress. These beneficial effects were associated with improvements in mitochondrial adaptive oxidation. HN-002 treatment enhanced lipid transport into mitochondria and oxidation, inhibited mitochondrial depolarization, and reduced mitochondrial ROS (mtROS) level in PA-treated hepatocytes. Mechanistically, HN-002 treatment disrupted the interaction between KEAP1 and NRF2, leading to NRF2 deubiquitylation and nuclear translocation, which activated beneficial metabolic regulation. In vivo, HN-002 treatment (20 mg/kg/per 2 days, i. p.) for 25 days effectively reversed hepatic steatosis and liver injury in the fast/refeeding plus high-fat/high-cholesterol diet induced MASLD mice. These therapeutic effects were associated with enhanced mitochondrial adaptive oxidation and activation of NRF2 signaling in the liver. These data suggest that HN-002 would be an interesting candidate for MASLD by improving mitochondrial oxidation via the FABP4/KEAP1/NRF2 axis. The discovery offers new insights into developing novel anti- MASLD agents derived from marine sources.
科研通智能强力驱动
Strongly Powered by AbleSci AI