Sowing Intelligence: Advancements in Crop Yield Prediction Through Machine Learning and Deep Learning Approaches

产量(工程) 播种 人工智能 作物 机器学习 深度学习 计算机科学 农业工程 农学 工程类 生物 材料科学 冶金
作者
Sivaraman Jayanthi,D. Tamil Priya,Naresh Goud M,Arugula Rajkumar,B Sriva
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4919385/v1
摘要

Abstract Ensuring global food security necessitates precise crop yield prediction for informed agricultural planning and resource allocation. We investigated the impact of temperature, rainfall, and pesticide application on crop yield using a comprehensive, multi-year, multi-region dataset. Our research rigorously compared, for the first time, the effectiveness of fifteen different algorithms encompassing both established machine learning and deep learning architectures, particularly Recurrent Neural Network (RNN), in constructing robust CYP models. Through rigorous experimentation and hyperparameter tuning, we aimed to identify the most optimal model for accurate yield prediction. We leveraged a comprehensive dataset encompassing various agricultural attributes, including geographical coordinates, crop varieties, climatic parameters, and farming practices. To ensure model effectiveness, we preprocessed the data, handling categorical variables, standardizing numerical features, and dividing the data into distinct training and testing sets. The experimental evaluation revealed that Random Forest achieved the highest accuracy, with an impressive (R²=0.99). However, XGBoost offered a compelling trade-off with slightly lower accuracy (R²=0.98) but significantly faster training and inference times (0.36s and 0.02s, respectively), making it suitable for real-world scenarios with limited computational resources. While XGBoost emerged as the most efficient and accurate solution in this investigation, we also explored the potential of deep learning approaches, including RNNs, for crop yield prediction, paving the way for future research into even greater accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助云渺采纳,获得30
1秒前
完美世界应助zhy采纳,获得10
2秒前
失眠班发布了新的文献求助10
2秒前
zhouzhou发布了新的文献求助10
2秒前
lw完成签到,获得积分20
2秒前
宋豆豆发布了新的文献求助10
3秒前
千冬完成签到,获得积分10
3秒前
吴携发布了新的文献求助10
3秒前
麻油球发布了新的文献求助10
4秒前
bkagyin应助Zed采纳,获得10
4秒前
5秒前
英俊的铭应助求知的周采纳,获得10
5秒前
zydd完成签到,获得积分10
5秒前
sanmao应助LZHWSND采纳,获得10
9秒前
科研通AI2S应助温暖的颜演采纳,获得10
9秒前
吴携完成签到,获得积分20
10秒前
尊敬秋双发布了新的文献求助10
10秒前
哭泣的又蓝完成签到,获得积分20
11秒前
11秒前
12秒前
13秒前
14秒前
Christine完成签到,获得积分10
15秒前
科研通AI2S应助jasmine采纳,获得10
15秒前
DIY101完成签到,获得积分10
15秒前
求知的周发布了新的文献求助10
16秒前
17秒前
DIY101发布了新的文献求助10
17秒前
橙子发布了新的文献求助10
17秒前
18秒前
李健的小迷弟应助宋豆豆采纳,获得10
18秒前
天天快乐应助西门访天采纳,获得10
18秒前
21秒前
charliechen完成签到 ,获得积分10
21秒前
youbin发布了新的文献求助10
21秒前
清爽凝荷发布了新的文献求助10
22秒前
24秒前
25秒前
27秒前
搜集达人应助LZHWSND采纳,获得10
27秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129103
求助须知:如何正确求助?哪些是违规求助? 2779953
关于积分的说明 7745314
捐赠科研通 2435069
什么是DOI,文献DOI怎么找? 1293897
科研通“疑难数据库(出版商)”最低求助积分说明 623472
版权声明 600542