Dual convolution-transformer UNet (DCT-UNet) for organs at risk and clinical target volume segmentation in MRI for cervical cancer brachytherapy

轮廓 分割 医学 放射治疗计划 直肠 近距离放射治疗 计算机科学 核医学 放射治疗 人工智能 放射科 外科 计算机图形学(图像)
作者
Ga-Young Kim,Akila Viswanathan,Rohini Bhatia,Yosef Landman,Michael Roumeliotis,Beth Erickson,Ehud J. Schmidt,Junghoon Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (21): 215014-215014
标识
DOI:10.1088/1361-6560/ad84b2
摘要

Abstract Objective . MRI is the standard imaging modality for high-dose-rate brachytherapy of cervical cancer. Precise contouring of organs at risk (OARs) and high-risk clinical target volume (HR-CTV) from MRI is a crucial step for radiotherapy planning and treatment. However, conventional manual contouring has limitations in terms of accuracy as well as procedural time. To overcome these, we propose a deep learning approach to automatically segment OARs (bladder, rectum, and sigmoid colon) and HR-CTV from female pelvic MRI. Approach . In the proposed pipeline, a coarse multi-organ segmentation model first segments all structures, from which a region of interest is computed for each structure. Then, each organ is segmented using an organ-specific fine segmentation model separately trained for each organ. To account for variable sizes of HR-CTV, a size-adaptive multi-model approach was employed. For coarse and fine segmentations, we designed a dual convolution-transformer UNet (DCT-UNet) which uses dual-path encoder consisting of convolution and transformer blocks. To evaluate our model, OAR segmentations were compared to the clinical contours drawn by the attending radiation oncologist. For HR-CTV, four sets of contours (clinical + three additional sets) were obtained to produce a consensus ground truth as well as for inter/intra-observer variability analysis. Main results . DCT-UNet achieved dice similarity coefficient (mean ± SD) of 0.932 ± 0.032 (bladder), 0.786 ± 0.090 (rectum), 0.663 ± 0.180 (sigmoid colon), and 0.741 ± 0.076 (HR-CTV), outperforming other state-of-the-art models. Notably, the size-adaptive multi-model significantly improved HR-CTV segmentation compared to a single-model. Furthermore, significant inter/intra-observer variability was observed, and our model showed comparable performance to all observers. Computation time for the entire pipeline per subject was 12.59 ± 0.79 s, which is significantly shorter than the typical manual contouring time of >15 min. Significance . These experimental results demonstrate that our model has great utility in cervical cancer brachytherapy by enabling fast and accurate automatic segmentation, and has potential in improving consistency in contouring. DCT-UNet source code is available at https://github.com/JHU-MICA/DCT-UNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺谷蓝完成签到,获得积分10
1秒前
Akim应助SZK采纳,获得10
1秒前
2秒前
3秒前
李爱国应助YxxxF采纳,获得10
3秒前
王志威发布了新的文献求助10
4秒前
5秒前
曲蔚然完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
姜宇航完成签到 ,获得积分10
8秒前
9秒前
加会减不会完成签到,获得积分10
9秒前
饕餮发布了新的文献求助10
10秒前
熊有鹏发布了新的文献求助10
10秒前
10秒前
Slence完成签到,获得积分10
11秒前
12秒前
kunkun完成签到,获得积分10
12秒前
墨扬完成签到 ,获得积分10
13秒前
海中有月完成签到,获得积分10
14秒前
wg言发布了新的文献求助10
14秒前
852应助kunkun采纳,获得10
16秒前
saxg_hu完成签到,获得积分10
17秒前
Owen应助梦幻时空采纳,获得30
17秒前
20秒前
22秒前
22秒前
22秒前
25秒前
隐形的雁发布了新的文献求助50
25秒前
zbl1314zbl发布了新的文献求助10
27秒前
如风随水发布了新的文献求助10
29秒前
小猫爬楼梯完成签到,获得积分10
29秒前
李健应助王志威采纳,获得10
30秒前
coolkid应助科研通管家采纳,获得10
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
领导范儿应助科研通管家采纳,获得10
32秒前
gu应助科研通管家采纳,获得10
32秒前
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951098
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082428
捐赠科研通 3226957
什么是DOI,文献DOI怎么找? 1784092
邀请新用户注册赠送积分活动 868183
科研通“疑难数据库(出版商)”最低求助积分说明 801069