Dual convolution-transformer UNet (DCT-UNet) for organs at risk and clinical target volume segmentation in MRI for cervical cancer brachytherapy

轮廓 分割 医学 放射治疗计划 直肠 近距离放射治疗 计算机科学 核医学 放射治疗 人工智能 放射科 外科 计算机图形学(图像)
作者
Ga-Young Kim,Akila Viswanathan,Rohini Bhatia,Yosef Landman,Michael Roumeliotis,Beth Erickson,Ehud J. Schmidt,Junghoon Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (21): 215014-215014
标识
DOI:10.1088/1361-6560/ad84b2
摘要

Abstract Objective . MRI is the standard imaging modality for high-dose-rate brachytherapy of cervical cancer. Precise contouring of organs at risk (OARs) and high-risk clinical target volume (HR-CTV) from MRI is a crucial step for radiotherapy planning and treatment. However, conventional manual contouring has limitations in terms of accuracy as well as procedural time. To overcome these, we propose a deep learning approach to automatically segment OARs (bladder, rectum, and sigmoid colon) and HR-CTV from female pelvic MRI. Approach . In the proposed pipeline, a coarse multi-organ segmentation model first segments all structures, from which a region of interest is computed for each structure. Then, each organ is segmented using an organ-specific fine segmentation model separately trained for each organ. To account for variable sizes of HR-CTV, a size-adaptive multi-model approach was employed. For coarse and fine segmentations, we designed a dual convolution-transformer UNet (DCT-UNet) which uses dual-path encoder consisting of convolution and transformer blocks. To evaluate our model, OAR segmentations were compared to the clinical contours drawn by the attending radiation oncologist. For HR-CTV, four sets of contours (clinical + three additional sets) were obtained to produce a consensus ground truth as well as for inter/intra-observer variability analysis. Main results . DCT-UNet achieved dice similarity coefficient (mean ± SD) of 0.932 ± 0.032 (bladder), 0.786 ± 0.090 (rectum), 0.663 ± 0.180 (sigmoid colon), and 0.741 ± 0.076 (HR-CTV), outperforming other state-of-the-art models. Notably, the size-adaptive multi-model significantly improved HR-CTV segmentation compared to a single-model. Furthermore, significant inter/intra-observer variability was observed, and our model showed comparable performance to all observers. Computation time for the entire pipeline per subject was 12.59 ± 0.79 s, which is significantly shorter than the typical manual contouring time of >15 min. Significance . These experimental results demonstrate that our model has great utility in cervical cancer brachytherapy by enabling fast and accurate automatic segmentation, and has potential in improving consistency in contouring. DCT-UNet source code is available at https://github.com/JHU-MICA/DCT-UNet .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
千北完成签到,获得积分10
刚刚
可爱春天完成签到,获得积分10
刚刚
刚刚
雪山飞龙发布了新的文献求助10
1秒前
eric888应助kento采纳,获得200
2秒前
3秒前
西奥完成签到 ,获得积分10
3秒前
xun发布了新的文献求助10
3秒前
SierraXiao完成签到,获得积分10
3秒前
3秒前
在水一方应助苏雨康采纳,获得10
3秒前
CipherSage应助白斯特采纳,获得10
4秒前
4秒前
4秒前
光亮乌完成签到,获得积分10
4秒前
阔达碧菡发布了新的文献求助10
4秒前
CodeCraft应助MR采纳,获得10
5秒前
Kyrie完成签到 ,获得积分10
5秒前
6秒前
褚蕴发布了新的文献求助10
6秒前
科目三应助江洋大盗采纳,获得10
6秒前
牧野发布了新的文献求助10
6秒前
6秒前
Lucas应助车宇采纳,获得10
6秒前
7秒前
nono发布了新的文献求助10
8秒前
bkagyin应助无情干饭崽采纳,获得10
8秒前
假装有昵称完成签到 ,获得积分10
9秒前
9秒前
共享精神应助zzz采纳,获得10
9秒前
溜溜溜溜溜完成签到,获得积分10
9秒前
FashionBoy应助王菲采纳,获得10
9秒前
谦让的靖巧完成签到,获得积分10
10秒前
10秒前
ssc完成签到,获得积分20
11秒前
往徕完成签到,获得积分10
11秒前
12秒前
12秒前
牧野完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514922
求助须知:如何正确求助?哪些是违规求助? 4608502
关于积分的说明 14511663
捐赠科研通 4544566
什么是DOI,文献DOI怎么找? 2490164
邀请新用户注册赠送积分活动 1472048
关于科研通互助平台的介绍 1443840