Dual convolution-transformer UNet (DCT-UNet) for organs at risk and clinical target volume segmentation in MRI for cervical cancer brachytherapy

轮廓 分割 医学 放射治疗计划 直肠 近距离放射治疗 计算机科学 核医学 放射治疗 人工智能 放射科 外科 计算机图形学(图像)
作者
Ga-Young Kim,Akila Viswanathan,Rohini Bhatia,Yosef Landman,Michael Roumeliotis,Beth Erickson,Ehud J. Schmidt,Junghoon Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (21): 215014-215014
标识
DOI:10.1088/1361-6560/ad84b2
摘要

Abstract Objective . MRI is the standard imaging modality for high-dose-rate brachytherapy of cervical cancer. Precise contouring of organs at risk (OARs) and high-risk clinical target volume (HR-CTV) from MRI is a crucial step for radiotherapy planning and treatment. However, conventional manual contouring has limitations in terms of accuracy as well as procedural time. To overcome these, we propose a deep learning approach to automatically segment OARs (bladder, rectum, and sigmoid colon) and HR-CTV from female pelvic MRI. Approach . In the proposed pipeline, a coarse multi-organ segmentation model first segments all structures, from which a region of interest is computed for each structure. Then, each organ is segmented using an organ-specific fine segmentation model separately trained for each organ. To account for variable sizes of HR-CTV, a size-adaptive multi-model approach was employed. For coarse and fine segmentations, we designed a dual convolution-transformer UNet (DCT-UNet) which uses dual-path encoder consisting of convolution and transformer blocks. To evaluate our model, OAR segmentations were compared to the clinical contours drawn by the attending radiation oncologist. For HR-CTV, four sets of contours (clinical + three additional sets) were obtained to produce a consensus ground truth as well as for inter/intra-observer variability analysis. Main results . DCT-UNet achieved dice similarity coefficient (mean ± SD) of 0.932 ± 0.032 (bladder), 0.786 ± 0.090 (rectum), 0.663 ± 0.180 (sigmoid colon), and 0.741 ± 0.076 (HR-CTV), outperforming other state-of-the-art models. Notably, the size-adaptive multi-model significantly improved HR-CTV segmentation compared to a single-model. Furthermore, significant inter/intra-observer variability was observed, and our model showed comparable performance to all observers. Computation time for the entire pipeline per subject was 12.59 ± 0.79 s, which is significantly shorter than the typical manual contouring time of >15 min. Significance . These experimental results demonstrate that our model has great utility in cervical cancer brachytherapy by enabling fast and accurate automatic segmentation, and has potential in improving consistency in contouring. DCT-UNet source code is available at https://github.com/JHU-MICA/DCT-UNet .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助猴子大王666采纳,获得10
1秒前
永远55度发布了新的文献求助10
1秒前
2秒前
46464发布了新的文献求助10
2秒前
4秒前
5秒前
5秒前
prew完成签到,获得积分20
5秒前
王一g完成签到,获得积分10
6秒前
6秒前
Ava应助tuanheqi采纳,获得20
6秒前
xubobo完成签到,获得积分10
7秒前
嘿嘿发布了新的文献求助10
8秒前
经久发布了新的文献求助10
8秒前
啦啦啦发布了新的文献求助10
9秒前
yyyg发布了新的文献求助50
9秒前
手可摘星辰完成签到,获得积分10
9秒前
小蘑菇应助悲凉的新筠采纳,获得10
10秒前
woxbin发布了新的文献求助10
10秒前
聂志鹏发布了新的文献求助10
11秒前
小二郎应助大气的砖家采纳,获得10
11秒前
闫辰龙发布了新的文献求助10
11秒前
11秒前
12秒前
小石头完成签到,获得积分10
12秒前
jgjghjghj完成签到,获得积分10
13秒前
Hello应助繁荣的念双采纳,获得10
14秒前
情怀应助auguscai采纳,获得10
15秒前
yyyg完成签到,获得积分10
15秒前
清衍发布了新的文献求助10
16秒前
17秒前
19秒前
丘比特应助山东及时雨采纳,获得10
19秒前
无名草0502完成签到 ,获得积分10
19秒前
孙小雨完成签到,获得积分10
19秒前
天天快乐应助weddcf采纳,获得10
19秒前
20秒前
浮游应助小于采纳,获得10
21秒前
BowieHuang应助小于采纳,获得10
21秒前
jason发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537074
求助须知:如何正确求助?哪些是违规求助? 4624638
关于积分的说明 14592736
捐赠科研通 4565155
什么是DOI,文献DOI怎么找? 2502201
邀请新用户注册赠送积分活动 1480908
关于科研通互助平台的介绍 1452098