亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual convolution-transformer UNet (DCT-UNet) for organs at risk and clinical target volume segmentation in MRI for cervical cancer brachytherapy

轮廓 分割 医学 放射治疗计划 直肠 近距离放射治疗 计算机科学 核医学 放射治疗 人工智能 放射科 外科 计算机图形学(图像)
作者
Ga-Young Kim,Akila Viswanathan,Rohini Bhatia,Yosef Landman,Michael Roumeliotis,Beth Erickson,Ehud J. Schmidt,Junghoon Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (21): 215014-215014
标识
DOI:10.1088/1361-6560/ad84b2
摘要

Abstract Objective . MRI is the standard imaging modality for high-dose-rate brachytherapy of cervical cancer. Precise contouring of organs at risk (OARs) and high-risk clinical target volume (HR-CTV) from MRI is a crucial step for radiotherapy planning and treatment. However, conventional manual contouring has limitations in terms of accuracy as well as procedural time. To overcome these, we propose a deep learning approach to automatically segment OARs (bladder, rectum, and sigmoid colon) and HR-CTV from female pelvic MRI. Approach . In the proposed pipeline, a coarse multi-organ segmentation model first segments all structures, from which a region of interest is computed for each structure. Then, each organ is segmented using an organ-specific fine segmentation model separately trained for each organ. To account for variable sizes of HR-CTV, a size-adaptive multi-model approach was employed. For coarse and fine segmentations, we designed a dual convolution-transformer UNet (DCT-UNet) which uses dual-path encoder consisting of convolution and transformer blocks. To evaluate our model, OAR segmentations were compared to the clinical contours drawn by the attending radiation oncologist. For HR-CTV, four sets of contours (clinical + three additional sets) were obtained to produce a consensus ground truth as well as for inter/intra-observer variability analysis. Main results . DCT-UNet achieved dice similarity coefficient (mean ± SD) of 0.932 ± 0.032 (bladder), 0.786 ± 0.090 (rectum), 0.663 ± 0.180 (sigmoid colon), and 0.741 ± 0.076 (HR-CTV), outperforming other state-of-the-art models. Notably, the size-adaptive multi-model significantly improved HR-CTV segmentation compared to a single-model. Furthermore, significant inter/intra-observer variability was observed, and our model showed comparable performance to all observers. Computation time for the entire pipeline per subject was 12.59 ± 0.79 s, which is significantly shorter than the typical manual contouring time of >15 min. Significance . These experimental results demonstrate that our model has great utility in cervical cancer brachytherapy by enabling fast and accurate automatic segmentation, and has potential in improving consistency in contouring. DCT-UNet source code is available at https://github.com/JHU-MICA/DCT-UNet .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
5秒前
大模型应助yyyyy5采纳,获得10
7秒前
敏1997发布了新的文献求助30
12秒前
20秒前
RachelPark完成签到,获得积分10
24秒前
艺玲发布了新的文献求助10
25秒前
敏1997完成签到,获得积分10
26秒前
土豪的摩托完成签到 ,获得积分10
28秒前
RachelPark发布了新的文献求助10
33秒前
1分钟前
kobiy完成签到 ,获得积分10
1分钟前
充电宝应助Monet采纳,获得10
1分钟前
夏瑞完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
Monet发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助xfcy采纳,获得10
3分钟前
3分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
3分钟前
鱿鱼完成签到,获得积分10
3分钟前
3分钟前
根瘤君发布了新的文献求助10
3分钟前
maying发布了新的文献求助10
3分钟前
3分钟前
maying完成签到 ,获得积分10
3分钟前
走走应助xfcy采纳,获得10
3分钟前
momo完成签到,获得积分10
3分钟前
852应助zxcvb666采纳,获得10
3分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
落落发布了新的文献求助10
4分钟前
4分钟前
4分钟前
zxcvb666发布了新的文献求助10
4分钟前
英俊的铭应助0911wxt采纳,获得10
4分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244700
求助须知:如何正确求助?哪些是违规求助? 2888396
关于积分的说明 8252771
捐赠科研通 2556854
什么是DOI,文献DOI怎么找? 1385414
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626247