Dual convolution-transformer UNet (DCT-UNet) for organs at risk and clinical target volume segmentation in MRI for cervical cancer brachytherapy

轮廓 分割 医学 放射治疗计划 直肠 近距离放射治疗 计算机科学 核医学 放射治疗 人工智能 放射科 外科 计算机图形学(图像)
作者
Ga-Young Kim,Akila Viswanathan,Rohini Bhatia,Yosef Landman,Michael Roumeliotis,Beth Erickson,Ehud J. Schmidt,Junghoon Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (21): 215014-215014
标识
DOI:10.1088/1361-6560/ad84b2
摘要

Abstract Objective . MRI is the standard imaging modality for high-dose-rate brachytherapy of cervical cancer. Precise contouring of organs at risk (OARs) and high-risk clinical target volume (HR-CTV) from MRI is a crucial step for radiotherapy planning and treatment. However, conventional manual contouring has limitations in terms of accuracy as well as procedural time. To overcome these, we propose a deep learning approach to automatically segment OARs (bladder, rectum, and sigmoid colon) and HR-CTV from female pelvic MRI. Approach . In the proposed pipeline, a coarse multi-organ segmentation model first segments all structures, from which a region of interest is computed for each structure. Then, each organ is segmented using an organ-specific fine segmentation model separately trained for each organ. To account for variable sizes of HR-CTV, a size-adaptive multi-model approach was employed. For coarse and fine segmentations, we designed a dual convolution-transformer UNet (DCT-UNet) which uses dual-path encoder consisting of convolution and transformer blocks. To evaluate our model, OAR segmentations were compared to the clinical contours drawn by the attending radiation oncologist. For HR-CTV, four sets of contours (clinical + three additional sets) were obtained to produce a consensus ground truth as well as for inter/intra-observer variability analysis. Main results . DCT-UNet achieved dice similarity coefficient (mean ± SD) of 0.932 ± 0.032 (bladder), 0.786 ± 0.090 (rectum), 0.663 ± 0.180 (sigmoid colon), and 0.741 ± 0.076 (HR-CTV), outperforming other state-of-the-art models. Notably, the size-adaptive multi-model significantly improved HR-CTV segmentation compared to a single-model. Furthermore, significant inter/intra-observer variability was observed, and our model showed comparable performance to all observers. Computation time for the entire pipeline per subject was 12.59 ± 0.79 s, which is significantly shorter than the typical manual contouring time of >15 min. Significance . These experimental results demonstrate that our model has great utility in cervical cancer brachytherapy by enabling fast and accurate automatic segmentation, and has potential in improving consistency in contouring. DCT-UNet source code is available at https://github.com/JHU-MICA/DCT-UNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小鹏同学完成签到,获得积分10
1秒前
2秒前
小二郎应助小李采纳,获得10
2秒前
LamHaousing完成签到,获得积分10
3秒前
3秒前
5秒前
dll关闭了dll文献求助
6秒前
希望天下0贩的0应助1123采纳,获得10
6秒前
6秒前
无花果应助欣慰雪巧采纳,获得10
6秒前
kakal完成签到,获得积分10
7秒前
一一发布了新的文献求助10
7秒前
鲜艳的怜菡完成签到,获得积分20
7秒前
7秒前
脑洞疼应助安谢采纳,获得10
7秒前
monica发布了新的文献求助10
8秒前
研友_ZeoKYL发布了新的文献求助10
8秒前
8秒前
无花果应助烦烦烦采纳,获得10
9秒前
10秒前
哑巴和喇叭完成签到 ,获得积分10
10秒前
10秒前
10秒前
kakal发布了新的文献求助30
11秒前
孟君发布了新的文献求助30
11秒前
bicargo发布了新的文献求助30
12秒前
希望天下0贩的0应助Zhang采纳,获得10
13秒前
13秒前
senli2018完成签到,获得积分10
14秒前
朝春日走去完成签到,获得积分10
14秒前
14秒前
15秒前
Lmy完成签到,获得积分10
15秒前
嘟嘟发布了新的文献求助10
15秒前
瑶瑶酱发布了新的文献求助10
15秒前
浮游应助无奈敏采纳,获得10
16秒前
张张发布了新的文献求助10
16秒前
LUNE完成签到 ,获得积分10
17秒前
鱼辞发布了新的文献求助30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424904
求助须知:如何正确求助?哪些是违规求助? 4539183
关于积分的说明 14165914
捐赠科研通 4456291
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435170
关于科研通互助平台的介绍 1412492