circ2DGNN: circRNA-disease Association Prediction via Transformer-based Graph Neural Network

人工神经网络 计算机科学 变压器 人工智能 工程类 电气工程 电压
作者
Keliang Cen,Z. Z. Xing,Xuan Wang,Yadong Wang,Junyi Li
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tcbb.2024.3488281
摘要

Investigating the associations between circRNA and diseases is vital for comprehending the underlying mechanisms of diseases and formulating effective therapies. Computational prediction methods often rely solely on known circRNA-disease data, indirectly incorporating other biomolecules' effects by computing circRNA and disease similarities based on these molecules. However, this approach is limited, as other biomolecules also play significant roles in circRNA-disease interactions. To address this, we construct a comprehensive heterogeneous network incorporating data on human circRNAs, diseases, and other biomolecule interactions to develop a novel computational model, circ2DGNN, which is built upon a heterogeneous graph neural network. circ2DGNN directly takes heterogeneous networks as inputs and obtains the embedded representation of each node for downstream link prediction through graph representation learning. circ2DGNN employs a Transformer-like architecture, which can compute heterogeneous attention score for each edge, and perform message propagation and aggregation, using a residual connection to enhance the representation vector. It uniquely applies the same parameter matrix only to identical meta-relationships, reflecting diverse parameter spaces for different relationship types. After fine-tuning hyperparameters via five-fold cross-validation, evaluation conducted on a test dataset shows circ2DGNN outperforms existing state-of-the-art(SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小金鱼儿发布了新的文献求助10
刚刚
1秒前
1秒前
qi发布了新的文献求助10
2秒前
2秒前
2秒前
NexusExplorer应助才下眉头采纳,获得10
2秒前
2秒前
晨晨发布了新的文献求助10
3秒前
慕青应助糟糕的半鬼采纳,获得10
3秒前
111发布了新的文献求助10
3秒前
3秒前
zzz关闭了zzz文献求助
4秒前
bkagyin应助常瑾瑜采纳,获得10
4秒前
HEANZ发布了新的文献求助10
5秒前
廉洁完成签到,获得积分10
5秒前
泊声完成签到,获得积分20
6秒前
6秒前
犇骉发布了新的文献求助10
6秒前
木木发布了新的文献求助10
7秒前
哒哒哒应助机智的曼易采纳,获得10
8秒前
张婷婷发布了新的文献求助10
8秒前
务实的孤菱完成签到,获得积分10
8秒前
烂漫梦容完成签到,获得积分10
10秒前
10秒前
刘钱美子完成签到,获得积分10
10秒前
sibo完成签到,获得积分10
11秒前
炙热的亦丝完成签到,获得积分10
11秒前
小马甲应助史永桂采纳,获得10
12秒前
涵泽发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
从从余余完成签到,获得积分10
13秒前
a31256246511完成签到,获得积分10
13秒前
笔墨留香完成签到,获得积分10
14秒前
15秒前
16秒前
bkagyin应助包子采纳,获得10
16秒前
疚祠发布了新的文献求助10
16秒前
石文完成签到,获得积分10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306