已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unveiling consumer preferences: A two-stage deep learning approach to enhance accuracy in multi-channel retail sales forecasting

销售预测 计算机科学 零售额 频道(广播) 人工智能 机器学习 营销 业务 电信
作者
Juntao Wu,Hefu Liu,Xiaoyu Yao,Liangqing Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:257: 125066-125066
标识
DOI:10.1016/j.eswa.2024.125066
摘要

In the dynamic and turbulent business environment, sales forecasting for multi-channel retailers has become increasingly intricate, particularly with the shift from traditional brick-and-mortar channels to a diverse range of distribution channels. This transition not only complicates forecasting challenges but also highlights the crucial role of utilizing online traceable consumer purchase data to discern consumer preferences for stores and products and enhance sales forecasting accuracy. This paper proposes a two-stage deep learning approach based on the Online Channel Consumer Preference Heterogram and Multi-Head Attention mechanism (OCCPH-MHA). In the first stage, the model identifies potential consumer group preferences based on individual purchasing behavior. In the second stage, it seamlessly integrates this identified feature with time-series demand data using a global–local attention mechanism, thereby facilitating multi-step forecasting. This study's robust validation involves testing the model on the dataset from a multi-channel retail restaurant company, showcasing its prowess in significantly improving the precision of sales forecasting. This not only substantiates the model's effectiveness but also underscores the importance of consumer group preferences, as it contributes to a comprehensive framework. This framework, focused on tracking the preferences of potential consumer groups, emerges as a valuable tool that collectively refines and optimizes the sales forecasting process for both industry practitioners and researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让寄容发布了新的文献求助10
1秒前
飞儿随缘发布了新的文献求助10
1秒前
科研通AI2S应助AM采纳,获得10
4秒前
平安发布了新的文献求助50
4秒前
5秒前
7秒前
8秒前
兜有米完成签到,获得积分10
8秒前
11秒前
风茠住发布了新的文献求助10
12秒前
13秒前
杳鸢应助缓慢珠采纳,获得20
13秒前
15秒前
starry发布了新的文献求助10
19秒前
一只熊发布了新的文献求助10
20秒前
泥巴发布了新的文献求助10
21秒前
22秒前
大个应助跳跃野狼采纳,获得10
23秒前
24秒前
25秒前
受伤雁荷发布了新的文献求助10
28秒前
29秒前
大模型应助wavelet采纳,获得10
29秒前
29秒前
星辰大海应助孙文杰采纳,获得10
30秒前
刘澳发布了新的文献求助10
31秒前
33秒前
研友_nxer7Z发布了新的文献求助10
33秒前
33秒前
jixuzhuixun完成签到,获得积分10
33秒前
HZHZHZ完成签到 ,获得积分0
34秒前
wavelet完成签到,获得积分10
36秒前
相悦发布了新的文献求助10
37秒前
37秒前
ww关注了科研通微信公众号
38秒前
调研昵称发布了新的文献求助10
41秒前
充电宝应助吹气球的金毛采纳,获得10
41秒前
wavelet发布了新的文献求助10
42秒前
皮皮完成签到 ,获得积分10
43秒前
43秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234342
求助须知:如何正确求助?哪些是违规求助? 2880713
关于积分的说明 8216705
捐赠科研通 2548304
什么是DOI,文献DOI怎么找? 1377655
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302