High-throughput calculation and machine learning of two-dimensional halide perovskite materials: Formation energy and band gap

材料科学 钙钛矿(结构) 卤化物 带隙 机器学习 理论(学习稳定性) 人工智能 密度泛函理论 工作流程 光伏系统 光电子学 算法 物理 无机化学 计算机科学 量子力学 工程类 化学 数据库 电气工程 结晶学
作者
Wenguang Hu,Lei Zhang
出处
期刊:Materials today communications [Elsevier BV]
卷期号:35: 105841-105841 被引量:14
标识
DOI:10.1016/j.mtcomm.2023.105841
摘要

Both band gap and stability of halide perovskites are prerequisites for deployable photovoltaic devices; however, many machine learning researches focus on one target output and a systematic machine learning workflow for achieving multiple targets is desirable. In this manuscript, we employ machine learning (ML) coupled with high-throughput density functional theory (DFT) calculation to predict potential two-dimensional lead-free halide perovskite materials with appropriate band gap and stability for solar cell applications. This is realized by the construction of two machine learning models based on the random forest algorithm with each targeting on band gap or formation energy, followed by the candidate intersection for the materials screening. The multi-objective DFT+ML framework predicts three possible lead-free two-dimensional halide perovskite materials with suitable stability and band gap, which are further evaluated via the molecular dynamics to evaluate their thermodynamic stability. Their spectroscopic limited maximum efficiencies (SLMEs) are calculated to confirm their photovoltaic capabilities. In order to comprehensively evaluate the features, new descriptors for the halide perovskite materials with better correlation with the target output are automatically formulated via symbolic regression based on genetic algorithms, and an alternative feature analysis method based on the literature textual data and natural language processing (NLP) is proposed. Post hoc analysis is performed via DFT and molecular dynamics to provide more detailed information on the materials prediction. This study highlights the developments multi-objective machine learning workflow for inverse materials design and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FP发布了新的文献求助10
刚刚
沉沉完成签到 ,获得积分0
1秒前
1秒前
冰销雪释完成签到,获得积分10
1秒前
在水一方应助djy采纳,获得10
2秒前
Or1ll完成签到,获得积分10
2秒前
Mtx3098520564发布了新的文献求助30
3秒前
lunar发布了新的文献求助10
3秒前
4秒前
ding应助leeyc采纳,获得10
4秒前
4秒前
脑洞疼应助醉熏的雁玉采纳,获得10
4秒前
4秒前
失眠百川发布了新的文献求助10
5秒前
5秒前
orixero应助yongtao采纳,获得10
6秒前
橙子皮发布了新的文献求助10
7秒前
Jasmine发布了新的文献求助10
7秒前
dyan发布了新的文献求助10
8秒前
李健的小迷弟应助Dominic采纳,获得10
8秒前
8秒前
abai完成签到,获得积分10
9秒前
9秒前
东郭凌波完成签到,获得积分10
9秒前
充电宝应助宣仰采纳,获得10
10秒前
图灵桑发布了新的文献求助10
10秒前
Yanping完成签到,获得积分10
10秒前
11秒前
11秒前
zdesfsfa完成签到,获得积分10
11秒前
12秒前
12秒前
tiantiantian发布了新的文献求助10
12秒前
隐形曼青应助Jasmine采纳,获得10
13秒前
忧伤的糜发布了新的文献求助10
14秒前
卡布发布了新的文献求助10
14秒前
15秒前
gujian发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971216
求助须知:如何正确求助?哪些是违规求助? 3515911
关于积分的说明 11180016
捐赠科研通 3251003
什么是DOI,文献DOI怎么找? 1795626
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805207