High-throughput calculation and machine learning of two-dimensional halide perovskite materials: Formation energy and band gap

材料科学 钙钛矿(结构) 卤化物 带隙 机器学习 理论(学习稳定性) 人工智能 密度泛函理论 工作流程 光伏系统 光电子学 算法 物理 无机化学 计算机科学 量子力学 工程类 化学 数据库 电气工程 结晶学
作者
Wenguang Hu,Lei Zhang
出处
期刊:Materials today communications [Elsevier BV]
卷期号:35: 105841-105841 被引量:14
标识
DOI:10.1016/j.mtcomm.2023.105841
摘要

Both band gap and stability of halide perovskites are prerequisites for deployable photovoltaic devices; however, many machine learning researches focus on one target output and a systematic machine learning workflow for achieving multiple targets is desirable. In this manuscript, we employ machine learning (ML) coupled with high-throughput density functional theory (DFT) calculation to predict potential two-dimensional lead-free halide perovskite materials with appropriate band gap and stability for solar cell applications. This is realized by the construction of two machine learning models based on the random forest algorithm with each targeting on band gap or formation energy, followed by the candidate intersection for the materials screening. The multi-objective DFT+ML framework predicts three possible lead-free two-dimensional halide perovskite materials with suitable stability and band gap, which are further evaluated via the molecular dynamics to evaluate their thermodynamic stability. Their spectroscopic limited maximum efficiencies (SLMEs) are calculated to confirm their photovoltaic capabilities. In order to comprehensively evaluate the features, new descriptors for the halide perovskite materials with better correlation with the target output are automatically formulated via symbolic regression based on genetic algorithms, and an alternative feature analysis method based on the literature textual data and natural language processing (NLP) is proposed. Post hoc analysis is performed via DFT and molecular dynamics to provide more detailed information on the materials prediction. This study highlights the developments multi-objective machine learning workflow for inverse materials design and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤迎海发布了新的文献求助10
刚刚
maitiandehe完成签到,获得积分10
刚刚
天天快乐应助甲壳虫采纳,获得10
2秒前
Wakakak完成签到,获得积分10
3秒前
传奇3应助Charlie采纳,获得30
6秒前
pgg完成签到,获得积分20
11秒前
11秒前
大耳朵小医生完成签到,获得积分10
11秒前
善学以致用应助辛勤迎海采纳,获得10
11秒前
隐形曼青应助辛勤迎海采纳,获得10
11秒前
小马甲应助辛勤迎海采纳,获得10
11秒前
冷艳惜梦发布了新的文献求助30
13秒前
ding应助九粒采纳,获得10
13秒前
Sherwin完成签到,获得积分10
14秒前
Jemma发布了新的文献求助10
16秒前
18秒前
18秒前
怕黑海冬发布了新的文献求助20
19秒前
YZC完成签到,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
充电宝应助WDD采纳,获得10
22秒前
吃醋的喵酱完成签到,获得积分10
24秒前
11发布了新的文献求助10
24秒前
25秒前
打打应助mayounaizi14采纳,获得10
25秒前
25秒前
25秒前
27秒前
28秒前
公孙世往发布了新的文献求助10
29秒前
29秒前
甲壳虫发布了新的文献求助10
31秒前
32秒前
WDD发布了新的文献求助10
32秒前
33秒前
赖晨靓发布了新的文献求助10
35秒前
hunbaekkkkk发布了新的文献求助10
36秒前
共享精神应助公孙世往采纳,获得10
39秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976418
求助须知:如何正确求助?哪些是违规求助? 3520512
关于积分的说明 11203586
捐赠科研通 3257127
什么是DOI,文献DOI怎么找? 1798594
邀请新用户注册赠送积分活动 877804
科研通“疑难数据库(出版商)”最低求助积分说明 806523