High-throughput calculation and machine learning of two-dimensional halide perovskite materials: Formation energy and band gap

材料科学 钙钛矿(结构) 卤化物 带隙 机器学习 理论(学习稳定性) 人工智能 密度泛函理论 工作流程 光伏系统 光电子学 算法 物理 无机化学 计算机科学 量子力学 工程类 电气工程 数据库 化学 结晶学
作者
Wenguang Hu,Lei Zhang
出处
期刊:Materials today communications [Elsevier]
卷期号:35: 105841-105841 被引量:13
标识
DOI:10.1016/j.mtcomm.2023.105841
摘要

Both band gap and stability of halide perovskites are prerequisites for deployable photovoltaic devices; however, many machine learning researches focus on one target output and a systematic machine learning workflow for achieving multiple targets is desirable. In this manuscript, we employ machine learning (ML) coupled with high-throughput density functional theory (DFT) calculation to predict potential two-dimensional lead-free halide perovskite materials with appropriate band gap and stability for solar cell applications. This is realized by the construction of two machine learning models based on the random forest algorithm with each targeting on band gap or formation energy, followed by the candidate intersection for the materials screening. The multi-objective DFT+ML framework predicts three possible lead-free two-dimensional halide perovskite materials with suitable stability and band gap, which are further evaluated via the molecular dynamics to evaluate their thermodynamic stability. Their spectroscopic limited maximum efficiencies (SLMEs) are calculated to confirm their photovoltaic capabilities. In order to comprehensively evaluate the features, new descriptors for the halide perovskite materials with better correlation with the target output are automatically formulated via symbolic regression based on genetic algorithms, and an alternative feature analysis method based on the literature textual data and natural language processing (NLP) is proposed. Post hoc analysis is performed via DFT and molecular dynamics to provide more detailed information on the materials prediction. This study highlights the developments multi-objective machine learning workflow for inverse materials design and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ulquiorra完成签到 ,获得积分10
1秒前
科研通AI2S应助冯不可采纳,获得10
3秒前
3秒前
赘婿应助Fury采纳,获得10
4秒前
BCS完成签到,获得积分10
5秒前
5秒前
5秒前
涵Allen完成签到 ,获得积分10
6秒前
6秒前
超文献发布了新的文献求助10
6秒前
汤姆完成签到 ,获得积分10
8秒前
xiaowu关注了科研通微信公众号
8秒前
wangayting发布了新的文献求助30
8秒前
shanchuan发布了新的文献求助10
9秒前
ffchen111完成签到 ,获得积分10
9秒前
Desire发布了新的文献求助10
9秒前
香菜完成签到,获得积分10
10秒前
泠泠泠萘应助科研通管家采纳,获得10
10秒前
jackten发布了新的文献求助10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
zuiai发布了新的文献求助10
12秒前
cheunsor完成签到,获得积分10
12秒前
16秒前
17秒前
科研通AI2S应助junru采纳,获得10
19秒前
shanchuan完成签到,获得积分10
20秒前
23秒前
xiaowu发布了新的文献求助10
24秒前
隐形之玉发布了新的文献求助10
25秒前
明理水之完成签到,获得积分10
26秒前
29秒前
30秒前
科研通AI2S应助junru采纳,获得10
30秒前
32秒前
jackten完成签到,获得积分10
33秒前
Cheng完成签到 ,获得积分10
34秒前
锋芒不毕露完成签到,获得积分10
34秒前
yoyo完成签到 ,获得积分10
34秒前
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787054
捐赠科研通 2444818
什么是DOI,文献DOI怎么找? 1300043
科研通“疑难数据库(出版商)”最低求助积分说明 625784
版权声明 601023