TS-LSSVM: Triple sparse least squares support vector machine for residual oxygen concentration detection of encapsulated pharmaceutical vials

残余物 支持向量机 小波 稀疏逼近 最小二乘支持向量机 计算机科学 人工智能 模式识别(心理学) 算法
作者
Qiwu Luo,Bingxing Zhou,Jingxuan Geng,Zihuai Liu,Jiaojiao Su,Chunhua Yang
出处
期刊:Measurement [Elsevier BV]
卷期号:214: 112717-112717 被引量:1
标识
DOI:10.1016/j.measurement.2023.112717
摘要

Accurate measurement of residual oxygen concentration in encapsulated pharmaceutical vials is adequate to ensure the quality of inner sterile preparations. However, the critical characteristic signal is feeble and covered by enormous environmental interference in the actual production. Inspired by structural sparse learning, we propose a novel prediction model in this paper, triple sparse least squares support vector machine (TS-LSSVM), in which the production priors are deeply excavated, and the feature, sample, and structure sparsity are realized simultaneously by redefining the objective function. In addition, the selection of support vectors can be adjusted adaptively according to the time-varying environmental noise, so as to ensure the reliability of long-term operation. First, the time–frequency components containing the prior knowledge are extracted based on the synchro squeezing wavelet transform (SSWT). Then, a triple sparse learning strategy is designed, which can accurately eliminate redundant wavelet coefficients and adaptively select training samples. Finally, a strict and fast optimization solution is proposed under the alternating direction method of multipliers (ADMM) framework. Experimental results on public and practical datasets prove the superiority of TS-LSSVM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅的悟空完成签到,获得积分10
1秒前
1秒前
2秒前
H0123完成签到,获得积分10
2秒前
Amanda发布了新的文献求助10
2秒前
3秒前
4秒前
Christina发布了新的文献求助10
5秒前
5秒前
老陈发布了新的文献求助10
5秒前
12334发布了新的文献求助10
6秒前
anyilin发布了新的文献求助10
7秒前
dongdongqiang发布了新的文献求助50
7秒前
123完成签到,获得积分10
7秒前
8秒前
hyd1640完成签到,获得积分10
9秒前
Leslie关注了科研通微信公众号
9秒前
Lucas应助婧婧采纳,获得10
11秒前
赵西里发布了新的文献求助10
12秒前
hyd1640发布了新的文献求助200
13秒前
14秒前
周周发布了新的文献求助10
14秒前
anyilin完成签到,获得积分10
18秒前
顾矜应助饭饭采纳,获得10
19秒前
香蕉班发布了新的文献求助10
19秒前
21秒前
JamesPei应助dongdongqiang采纳,获得50
21秒前
24秒前
Christina完成签到,获得积分10
25秒前
婧婧发布了新的文献求助10
27秒前
彭于彦祖应助小蜗采纳,获得30
27秒前
28秒前
29秒前
林剑立完成签到,获得积分10
33秒前
34秒前
婧婧完成签到,获得积分10
36秒前
CodeCraft应助高大的水米采纳,获得10
38秒前
开心冷霜发布了新的文献求助10
40秒前
41秒前
奇异果完成签到,获得积分10
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141261
捐赠科研通 3241177
什么是DOI,文献DOI怎么找? 1791399
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803396