Engineering grain boundaries in monolayer molybdenum disulfide for an efficient water/ion separation

材料科学 单层 渗透 晶界 化学工程 二硫化钼 海水淡化 成核 纳米技术 化学 复合材料 有机化学 渗透 生物化学 微观结构 工程类
作者
Yu Han,Jie Shen,Areej Aljarb,Yichen Cai,Xing Liu,Jiacheng Min,Yingge Wang,Chenhui Zhang,Cailing Chen,Mariam Hakami,Jui‐Han Fu,Hui Zhang,Guanxing Li,Xiaoqian Wang,Zhuo Chen,Jiaqiang Li,Xinglong Dong,Vincent Tung,Guosheng Shi,Ingo Pinnau
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-2630063/v1
摘要

Abstract Atomically thin two-dimensional (2D) materials have long been considered as ideal platforms for developing separation membranes. However, it is difficult to generate uniform subnanometer pores over large areas on 2D materials. Herein, we report that the well-defined defect structure of monolayer MoS 2 , namely, eight-membered ring (8-MR) pores typically formed at the boundaries of two antiparallel grains, can serve as molecular sieves for efficient water/ion separation. The 8-MR pores (4.2 × 2.4 Å) in monolayer MoS 2 allow rapid single-file water transport while rejecting various hydrated ions. Further, the density of grain boundaries and, consequently, the density of pores can be tuned by regulating the nucleation density and size of MoS 2 grains during the chemical vapor deposition process. The optimized MoS 2 membrane exhibited an ultrahigh water/NaCl selectivity of ~6.5 × 10 4 at a water permeance of 232 mol m −2 h −1 bar −1 , outperforming the state-of-the-art desalination membranes. When used for direct hydrogen production from seawater by combining the forward osmosis and electrochemical water splitting processes, the membrane achieved ~40 times the energy conversion efficiency of commercial polymeric membranes. It also exhibited a rapid and selective proton transport behavior desirable for fuel cells and electrolysis. The bottom-up approach of creating precise pore structures on atomically thin films via grain boundary engineering presents a promising route for producing large-area membranes suitable for various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助乔心采纳,获得10
1秒前
监督導部完成签到,获得积分10
2秒前
上章完成签到,获得积分10
2秒前
xj0806完成签到 ,获得积分10
7秒前
8秒前
8秒前
10秒前
lucky发布了新的文献求助30
11秒前
13秒前
ww完成签到,获得积分10
13秒前
15秒前
神光发布了新的文献求助10
18秒前
SciGPT应助秋海棠采纳,获得10
18秒前
zho发布了新的文献求助10
19秒前
赘婿应助景笑天采纳,获得10
25秒前
NexusExplorer应助网再快点采纳,获得10
29秒前
30秒前
棉花糖完成签到,获得积分20
32秒前
chiyu完成签到,获得积分10
32秒前
cdercder应助资白玉采纳,获得10
33秒前
blawxx完成签到,获得积分10
34秒前
35秒前
Narcissus完成签到,获得积分10
36秒前
kinzer发布了新的文献求助10
36秒前
37秒前
Yuan发布了新的文献求助10
37秒前
紫电青霜完成签到,获得积分10
39秒前
科研通AI2S应助积极的睫毛采纳,获得10
40秒前
ceeray23应助yan采纳,获得10
40秒前
41秒前
shepherd发布了新的文献求助60
43秒前
小巧的傲松完成签到,获得积分10
43秒前
网再快点发布了新的文献求助10
45秒前
万能图书馆应助梦幻采纳,获得10
45秒前
研友_VZG7GZ应助CATH采纳,获得10
45秒前
完美世界应助科研通管家采纳,获得10
46秒前
Akim应助科研通管家采纳,获得10
46秒前
Auston_zhong应助科研通管家采纳,获得10
46秒前
大个应助科研通管家采纳,获得10
46秒前
领导范儿应助科研通管家采纳,获得10
46秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737385
求助须知:如何正确求助?哪些是违规求助? 3281209
关于积分的说明 10023728
捐赠科研通 2997939
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782304
科研通“疑难数据库(出版商)”最低求助积分说明 749762