Artificial Intelligence‐Assisted Label‐Free Spectroscopic Quantification of Global DNA Cytosine Methylation in a Miniature Plasmonic Pickering Emulsion

DNA甲基化 生物传感器 DNA 表观遗传学 甲基化 胞嘧啶 材料科学 计算生物学 表面增强拉曼光谱 纳米技术 拉曼光谱 分子生物学 生物 组合化学 化学 生物化学 基因 拉曼散射 基因表达 物理 光学
作者
Yangcenzi Xie,Mingyang Chen,Xinyu Liu,Xiaoming Su,Ming Li
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (48) 被引量:10
标识
DOI:10.1002/adfm.202307091
摘要

Abstract Epigenetic DNA methylations are early and frequently observed events in a diversity of diseases such as cancer. Despite the considerable clinical values for cancer liquid biopsy, quantitative analysis of DNA methylations remains a major challenge due to the lack of rapid, sensitive detection techniques. Here, an artificial intelligence‐assisted label‐free surface‐enhanced Raman spectroscopy (SERS) (iMeSERS) biosensor is reported for simultaneous quantification of C 5 ‐methylcytosine ( 5m C) level and methylation ratio in DNA samples. This method utilizes the plasmonic Pickering emulsions as the biosensing platform for label‐free SERS detection, formed upon the addition of a sub‐microliter DNA sample to the hydrophobic Au nanostar‐containing n ‐decane. Distinct spectral signatures of monophosphates of canonical deoxyribonucleotides (dNMPs) and the common methylation modification 5‐methyl‐2′‐deoxycytidine (d 5m CMP) are identified and distinguished by the iMeSERS biosensor. The deep learning algorithms trained with SERS signatures of dNMPs and d 5m CMP are then applied to the quantitative analysis of global DNA methylation. The exceptional capability of the deep learning‐driven approach is demonstrated for simultaneous quantification of the methylation ratio and level using a sub‐microliter volume of DNA samples. This work shows the power of label‐free SERS techniques combined with deep learning algorithms for quantitative analysis of epigenetic DNA modifications with great promises for clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
爱听歌的梦易完成签到 ,获得积分10
1秒前
MM11111完成签到,获得积分10
1秒前
3秒前
4秒前
白河夜船完成签到,获得积分10
4秒前
4秒前
5秒前
Jasper应助CHR采纳,获得10
5秒前
Suki发布了新的文献求助10
6秒前
小卤蛋发布了新的文献求助10
6秒前
111发布了新的文献求助10
8秒前
9秒前
42发布了新的文献求助50
10秒前
Jason完成签到 ,获得积分10
11秒前
SICHEN应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
凯蒂发布了新的文献求助10
11秒前
Grayball应助科研通管家采纳,获得10
11秒前
SICHEN应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
劲秉应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
阿坤应助科研通管家采纳,获得10
12秒前
Grayball应助科研通管家采纳,获得10
12秒前
lin应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672688
求助须知:如何正确求助?哪些是违规求助? 3228855
关于积分的说明 9782298
捐赠科研通 2939285
什么是DOI,文献DOI怎么找? 1610759
邀请新用户注册赠送积分活动 760719
科研通“疑难数据库(出版商)”最低求助积分说明 736198