Robust Attitude and Positioning Alignment Methods for SINS/DVL Integration Based on Sliding Window Improvements

惯性导航系统 卡尔曼滤波器 滑动窗口协议 过程(计算) 离群值 计算机科学 控制理论(社会学) 计算机视觉 人工智能 动态定位 惯性参考系 工程类 窗口(计算) 物理 操作系统 海洋工程 控制(管理) 量子力学
作者
Xiang Xu,Yao Li,Lihua Zhu,Yiqing Yao
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:1
标识
DOI:10.1109/tie.2023.3294582
摘要

The strapdown inertial navigation system (SINS) and Doppler velocity log (DVL) are the major positioning system for underwater vehicles. The initial alignment process is the first working stage of SINS/DVL integration. Currently, the initial alignment method for SINS/DVL integration is imperfect. The major problems can be summarized in two aspects. One is the initial velocity errors and outliers of DVL outputs, which are not suppressed simultaneously. The other is the positioning uncertainty when the attitude alignment is finished. To address these two problems, robust attitude and positioning alignment methods are proposed in this article. First, a vector observation, which is based on the sliding windows improvements, is constructed for eliminating the initial velocity errors. Second, the apparent velocity motion model for the vector observation with the sliding window improvements is constructed. Based on the constructed model, a parameter estimation method, which is established by a robust Kalman filter, is proposed. Using the estimated parameters, the new observed vectors are reconstructed. Thus, the robust attitude alignment process is finished. Third, real-time and postprocessing positioning alignment methods are proposed for addressing positioning uncertainty. At last, the simulation and field tests are designed for verifying the performance of the proposed method. The test results are shown that the existing two problems are overcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
于嗣濠完成签到 ,获得积分10
刚刚
36456657应助CC采纳,获得10
刚刚
优雅山柏发布了新的文献求助10
1秒前
Jacky完成签到,获得积分10
1秒前
脑洞疼应助无情的白桃采纳,获得10
1秒前
mm发布了新的文献求助10
1秒前
2秒前
2秒前
zoko发布了新的文献求助10
2秒前
2秒前
曾经的臻发布了新的文献求助10
2秒前
华仔应助S1mple_gentleman采纳,获得10
2秒前
科研通AI5应助CC采纳,获得10
2秒前
2秒前
3秒前
3秒前
张静静完成签到,获得积分10
4秒前
4秒前
震666发布了新的文献求助30
4秒前
MADKAI发布了新的文献求助10
4秒前
4秒前
117发布了新的文献求助10
4秒前
5秒前
5秒前
酶没美镁完成签到,获得积分10
5秒前
小二郎应助Rui采纳,获得10
5秒前
Libra完成签到,获得积分10
6秒前
雪儿发布了新的文献求助30
6秒前
无悔呀发布了新的文献求助10
6秒前
小巧的可仁完成签到 ,获得积分10
6秒前
6秒前
zhao完成签到,获得积分10
7秒前
masu发布了新的文献求助10
7秒前
冷酷尔琴发布了新的文献求助10
8秒前
Ll发布了新的文献求助10
8秒前
优雅山柏完成签到,获得积分10
8秒前
XinyiZhang发布了新的文献求助10
8秒前
小蘑菇应助yangyang采纳,获得10
8秒前
慕青应助欢欢采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740