Robust Attitude and Positioning Alignment Methods for SINS/DVL Integration Based on Sliding Window Improvements

惯性导航系统 卡尔曼滤波器 滑动窗口协议 过程(计算) 离群值 计算机科学 控制理论(社会学) 计算机视觉 人工智能 动态定位 惯性参考系 工程类 窗口(计算) 物理 控制(管理) 量子力学 海洋工程 操作系统
作者
Xiang Xu,Yao Li,Lihua Zhu,Yiqing Yao
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:1
标识
DOI:10.1109/tie.2023.3294582
摘要

The strapdown inertial navigation system (SINS) and Doppler velocity log (DVL) are the major positioning system for underwater vehicles. The initial alignment process is the first working stage of SINS/DVL integration. Currently, the initial alignment method for SINS/DVL integration is imperfect. The major problems can be summarized in two aspects. One is the initial velocity errors and outliers of DVL outputs, which are not suppressed simultaneously. The other is the positioning uncertainty when the attitude alignment is finished. To address these two problems, robust attitude and positioning alignment methods are proposed in this article. First, a vector observation, which is based on the sliding windows improvements, is constructed for eliminating the initial velocity errors. Second, the apparent velocity motion model for the vector observation with the sliding window improvements is constructed. Based on the constructed model, a parameter estimation method, which is established by a robust Kalman filter, is proposed. Using the estimated parameters, the new observed vectors are reconstructed. Thus, the robust attitude alignment process is finished. Third, real-time and postprocessing positioning alignment methods are proposed for addressing positioning uncertainty. At last, the simulation and field tests are designed for verifying the performance of the proposed method. The test results are shown that the existing two problems are overcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
HLQF完成签到,获得积分10
3秒前
江边鸟完成签到 ,获得积分10
4秒前
hg08完成签到,获得积分10
5秒前
丘比特应助小药同学采纳,获得10
5秒前
烟花应助zz采纳,获得10
7秒前
8秒前
卡卡罗特发布了新的文献求助10
9秒前
正直莫英完成签到,获得积分10
10秒前
黄彤彤关注了科研通微信公众号
10秒前
丁仪发布了新的文献求助10
10秒前
852应助毛毛采纳,获得10
10秒前
xyjf15完成签到,获得积分10
10秒前
卡尔拉完成签到,获得积分10
10秒前
Jasper应助Xylah_Rebecca采纳,获得10
13秒前
13秒前
SYLH应助赵杰采纳,获得10
13秒前
孙燕应助白桦林泪采纳,获得30
14秒前
田様应助白桦林泪采纳,获得10
14秒前
义气冷菱发布了新的文献求助10
14秒前
慕青应助Eleanor采纳,获得10
14秒前
15秒前
kitty完成签到 ,获得积分10
16秒前
李健的粉丝团团长应助Gao采纳,获得10
16秒前
要减肥完成签到,获得积分20
18秒前
19秒前
嘞是举仔发布了新的文献求助10
20秒前
黄彤彤发布了新的文献求助30
25秒前
顾矜应助hanshu采纳,获得10
25秒前
27秒前
28秒前
w1完成签到,获得积分10
28秒前
田様应助沐晴采纳,获得10
29秒前
丘比特应助嘞是举仔采纳,获得10
29秒前
29秒前
温暖的沛凝完成签到 ,获得积分10
30秒前
automan完成签到,获得积分10
31秒前
Xian发布了新的文献求助10
32秒前
zyx174733发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190