作者
Xi Deng,Yao Huang,Wenping Yuan,Wen Zhang,Philippe Ciais,Wenjie Dong,Pete Smith,Zhangcai Qin
摘要
Improving soil health and resilience is fundamental for sustainable food production, however the role of soil in maintaining or improving global crop productivity under climate warming is not well identified and quantified. Here, we examined the impact of soil on yield response to climate warming for four major crops (i.e., maize, wheat, rice and soybean), using global-scale datasets and random forest method. We found that each °C of warming reduced global yields of maize by 3.4%, wheat by 2.4%, rice by 0.3% and soybean by 5.0%, which were spatially heterogeneous with possible positive impacts. The random forest modeling analyses further showed that soil organic carbon (SOC), as an indicator of soil quality, dominantly explained the spatial heterogeneity of yield responses to warming and would regulate the negative warming responses. Improving SOC under the medium SOC sequestration scenario would reduce the warming-induced yield loss of maize, wheat, rice and soybean to 0.1% °C-1, 2.7% °C-1, 3.4% °C-1 and - 0.6% °C-1, respectively, avoiding an average of 3%-5% °C-1 of global yield loss. These yield benefits would occur on 53.2%, 67.8%, 51.8% and 71.6% of maize, wheat, rice and soybean planting areas, respectively, with particularly pronounced benefits in the regions with negative warming responses. With improved soil carbon, food systems are predicted to provide additional 20 to over 130 million tonnes of food that would otherwise lose due to future warming. Our findings highlight the critical role of soil in alleviating negative warming impacts on food security, especially for developing regions, given that sustainable actions on soil improvement could be taken broadly.