基因敲除
小RNA
转染
生物
报告基因
脂质代谢
甾醇调节元件结合蛋白
免疫印迹
下调和上调
基因表达调控
细胞生物学
基因表达
分子生物学
基因
生物化学
作者
Baojun Yu,Lei Zhu,Zhengyun Cai,Tong Mu,Di Zhang,Xiaofang Feng,Yaling Gu,Juan Zhang
标识
DOI:10.1016/j.ijbiomac.2023.127096
摘要
MicroRNAs (miRNAs) are important post-transcriptional factors involved in the regulation of gene expression and play crucial roles in biological processes related to milk fat metabolism. Our previous study revealed that miR-19a expression was significantly higher in the mammary epithelial cells of high-milk fat cows than in those of low-milk fat cows. However, the precise molecular mechanisms underlying these differences remain unclear. In this study, we found a high expression of miR-19a in the mammary tissues of dairy cows. The regulatory effects of miR-19a on bovine mammary epithelial cells (BMECs) were analyzed using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays, which demonstrated that miR-19a significantly inhibited BMEC proliferation. Transfection of the miR-19a mimic into BMECs significantly upregulated the expression of milk fat marker genes LPL, SCAP, and SREBP1, promoting triglyceride (TG) synthesis and lipid droplet formation, whereas the miR-19a inhibitor exhibited the opposite function. TargetScan and miRWalk predictions revealed that synaptotagmin 1 (SYT1) is a target gene of miR-19a. A dual luciferase reporter gene assay, RT-qPCR, and western blot analyses revealed that miR-19a directly targets the 3'-untranslated region (UTR) of SYT1 and negatively regulates SYT1 expression. Functional validation revealed that overexpression of SYT1 in BMECs significantly downregulated the expression of LPL, SCAP, and SREBP1, and inhibited TG synthesis and lipid droplet formation. Conversely, the knockdown of SYT1 had the opposite effect. Altogether, miR-19a plays a crucial role in regulating the proliferation and differentiation of BMECs and regulates biological processes related to TG synthesis and lipid droplet formation by suppressing SYT1 expression. These findings provide a strong foundation for further research on the functional mechanisms underlying milk fat metabolism in dairy cows.
科研通智能强力驱动
Strongly Powered by AbleSci AI