Adaptive Feature Selection and GCN With Optimal Graph Structure-Based Ultra-Short-Term Wind Farm Cluster Power Forecasting Method

计算机科学 冗余(工程) 特征选择 风力发电 图形 数据挖掘 算法 人工智能 模式识别(心理学) 数学优化 数学 理论计算机科学 工程类 电气工程 操作系统
作者
Honglai Xu,Yiran Zhang,Zhao Zhen,Fei Xu,Fei Wang
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:60 (1): 1804-1813 被引量:2
标识
DOI:10.1109/tia.2023.3321863
摘要

Cluster-level wind power forecasting is of great significance for the centralized integration of wind power into the grid. Studies have shown that adjacent wind farms exhibit high spatial-temporal correlation. As an extension of the convolutional neural networks (CNN), the graph convolutional neural networks (GCN) can effectively extract spatial-temporal features from the power and numerical weather prediction (NWP) data of adjacent wind farms. However, the strong correlation among NWP data from various wind farms within the same region inevitably leads to higher redundancy. Directly modeling all the wind farms of the cluster as a graph input for GCN would result in increased complexity and computational costs of the prediction model, thereby affecting the performance and accuracy of the prediction model. Therefore, it is necessary to perform feature selection on the wind farm cluster. To address the issue of manually determining the optimal number of features in the traditional maximum relevance minimum redundancy (MRMR) algorithm through cross-validation, an adaptive MRMR algorithm is proposed by introducing conditional mutual information. This algorithm automatically determines the optimal number of features in the feature subset. The optimal feature subsets obtained are used to construct an optimal graph structure as input for GCN in wind farm cluster power forecasting. Simulation results demonstrate that the proposed method has lower data and computational costs while exhibiting outstanding performance in improving power prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zky17715002完成签到,获得积分10
刚刚
青衍完成签到,获得积分10
刚刚
recardo完成签到,获得积分10
1秒前
1秒前
1秒前
啦啦啦发布了新的文献求助10
1秒前
桐桐应助song采纳,获得10
2秒前
传奇3应助得得采纳,获得10
2秒前
楚狂接舆完成签到,获得积分10
2秒前
Sharonnnnnn完成签到,获得积分10
3秒前
tad81发布了新的文献求助10
3秒前
小芒果完成签到,获得积分10
4秒前
yulong完成签到,获得积分10
4秒前
爱笑的千寻完成签到,获得积分10
5秒前
5秒前
Yw_M完成签到,获得积分10
6秒前
Luna完成签到 ,获得积分10
6秒前
活力的秋烟完成签到,获得积分10
7秒前
eiland发布了新的文献求助10
7秒前
深情安青应助笙璃采纳,获得10
8秒前
8秒前
啦啦啦完成签到,获得积分10
8秒前
Ava应助da采纳,获得10
8秒前
Solar energy完成签到,获得积分10
8秒前
9秒前
OFish发布了新的文献求助10
9秒前
菠菜菜str完成签到,获得积分10
9秒前
萌神_HUGO完成签到,获得积分10
9秒前
鳗鱼不尤完成签到,获得积分10
9秒前
秋水揽星河完成签到,获得积分10
10秒前
苹果枣豆完成签到,获得积分10
10秒前
lax完成签到,获得积分10
10秒前
Jasmine Mai完成签到,获得积分10
11秒前
开心就吃猕猴桃完成签到,获得积分10
11秒前
共渡完成签到,获得积分10
11秒前
自然沁完成签到,获得积分10
12秒前
小离心机完成签到,获得积分10
12秒前
彤彤完成签到 ,获得积分10
12秒前
林齐完成签到 ,获得积分10
12秒前
qq小兵完成签到,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Textbook of Interventional Radiology 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294825
求助须知:如何正确求助?哪些是违规求助? 2930755
关于积分的说明 8447840
捐赠科研通 2603057
什么是DOI,文献DOI怎么找? 1420887
科研通“疑难数据库(出版商)”最低求助积分说明 660702
邀请新用户注册赠送积分活动 643531