Few-Shot Industrial Meter Detection Based on Sim-to-Real Domain Adaptation and Category Augmentation

分类器(UML) 领域(数学分析) 人工智能 计算机科学 域适应 目标检测 符号 机器学习 计算机视觉 模式识别(心理学) 数学 数学分析 算术
作者
Ming Zeng,Shutong Zhong,Leijiao Ge
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10
标识
DOI:10.1109/tim.2023.3332939
摘要

Rapid and accurate detection of industrial meters in complex scenarios is an essential step toward inspection robot automatic meter recognition. Deep learning (DL) is a promising solution. However, due to the lack of large-scale public industrial meter image datasets, it is very difficult to train industrial meter detection models based on DL. Therefore, in this article, we combine the image generation technique and sim-to-real domain adaption technique to address the problem of few-shot industrial meter detection in complex scenarios. Specifically, we use Stable Diffusion to generate abundant virtual samples as the source domain dataset by inputting textual prompts. A small number of real samples are used as the target domain dataset. In addition, to attenuate the effect of domain shift, we propose a domain adaptation object detection framework based on category augmentation. This framework introduces domain information into the classifier and combines uncertainty estimation, which not only eliminates the training of domain classifiers in traditional adversarial learning-based domain adaptation algorithms but also facilitates feature alignment between source domain and target domain. Experiments show that the framework achieves 50.8% mAP50:95 and $55.0\% F1$ score, which outperforms the network trained with only real images by 8.3% mAP50:95 and $8.7\% F1$ score. We can achieve close performance with only 25% of the target domain samples with the help of the source domain dataset. Moreover, our method also outperforms other state-of-the-art methods in supervised domain adaptation object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ylh发布了新的文献求助10
1秒前
Kilin完成签到,获得积分10
1秒前
友好真发布了新的文献求助10
2秒前
www发布了新的文献求助10
2秒前
小赵同学完成签到,获得积分10
3秒前
水星摸鱼发布了新的文献求助30
4秒前
GYGeorge完成签到,获得积分10
5秒前
Akim应助阿聪采纳,获得100
6秒前
bkagyin应助Jason采纳,获得10
8秒前
晶坚强完成签到,获得积分10
8秒前
梓树发布了新的文献求助10
10秒前
英姑应助123456789采纳,获得10
10秒前
10秒前
12秒前
李笑完成签到,获得积分10
12秒前
友好真完成签到,获得积分10
12秒前
诺贝尔天才小狗完成签到,获得积分10
14秒前
流年发布了新的文献求助20
14秒前
水星摸鱼完成签到,获得积分10
15秒前
思源应助伍寒烟采纳,获得10
17秒前
TBI发布了新的文献求助200
17秒前
18秒前
19秒前
22秒前
Hello应助梓树采纳,获得10
23秒前
nml发布了新的文献求助10
23秒前
25秒前
名称完成签到,获得积分10
25秒前
tomorrow发布了新的文献求助30
25秒前
ED应助慵懒的树采纳,获得10
26秒前
flow完成签到 ,获得积分10
27秒前
tqmx完成签到,获得积分10
28秒前
苯环完成签到,获得积分10
29秒前
桐桐应助provin采纳,获得10
30秒前
无花果应助疯癫科研人采纳,获得10
31秒前
花花发布了新的文献求助10
31秒前
LJX完成签到,获得积分10
32秒前
一天一篇sci完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309