Few-Shot Industrial Meter Detection Based on Sim-to-Real Domain Adaptation and Category Augmentation

分类器(UML) 领域(数学分析) 人工智能 计算机科学 域适应 目标检测 符号 机器学习 计算机视觉 模式识别(心理学) 数学 数学分析 算术
作者
Ming Zeng,Zhong Shunhe,Leijiao Ge
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10
标识
DOI:10.1109/tim.2023.3332939
摘要

Rapid and accurate detection of industrial meters in complex scenarios is an essential step toward inspection robot automatic meter recognition. Deep learning (DL) is a promising solution. However, due to the lack of large-scale public industrial meter image datasets, it is very difficult to train industrial meter detection models based on DL. Therefore, in this article, we combine the image generation technique and sim-to-real domain adaption technique to address the problem of few-shot industrial meter detection in complex scenarios. Specifically, we use Stable Diffusion to generate abundant virtual samples as the source domain dataset by inputting textual prompts. A small number of real samples are used as the target domain dataset. In addition, to attenuate the effect of domain shift, we propose a domain adaptation object detection framework based on category augmentation. This framework introduces domain information into the classifier and combines uncertainty estimation, which not only eliminates the training of domain classifiers in traditional adversarial learning-based domain adaptation algorithms but also facilitates feature alignment between source domain and target domain. Experiments show that the framework achieves 50.8% mAP50:95 and $55.0\% F1$ score, which outperforms the network trained with only real images by 8.3% mAP50:95 and $8.7\% F1$ score. We can achieve close performance with only 25% of the target domain samples with the help of the source domain dataset. Moreover, our method also outperforms other state-of-the-art methods in supervised domain adaptation object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hongsong完成签到,获得积分20
刚刚
prosperp应助背侧丘脑采纳,获得10
1秒前
好好发布了新的文献求助10
1秒前
gaos发布了新的文献求助10
1秒前
einuo发布了新的文献求助10
2秒前
001完成签到,获得积分20
2秒前
李健应助阔达萧采纳,获得10
2秒前
陆离发布了新的文献求助10
2秒前
3秒前
66应助雪白红紫采纳,获得10
3秒前
英俊的铭应助东郭南松采纳,获得10
3秒前
YANG完成签到 ,获得积分10
4秒前
冷酷哈密瓜完成签到,获得积分10
5秒前
岁月流年完成签到,获得积分10
5秒前
5秒前
6秒前
8个老登发布了新的文献求助10
7秒前
douzi完成签到,获得积分10
7秒前
Li完成签到,获得积分10
7秒前
Macaco完成签到,获得积分10
8秒前
研友_8Yo3dn完成签到,获得积分10
8秒前
lilac完成签到,获得积分10
8秒前
misalia发布了新的文献求助10
8秒前
judy发布了新的文献求助10
8秒前
9秒前
李健的小迷弟应助称心铭采纳,获得30
9秒前
9秒前
adfadf发布了新的文献求助10
9秒前
CC完成签到,获得积分10
9秒前
1234567890完成签到,获得积分10
9秒前
彩色夏波发布了新的文献求助10
10秒前
劲秉应助跳舞的俏皮采纳,获得20
10秒前
10秒前
wy.he完成签到,获得积分0
11秒前
小林太郎应助小磊采纳,获得20
11秒前
QinMengyao完成签到,获得积分10
11秒前
hhh完成签到,获得积分10
12秒前
朴素的不乐完成签到 ,获得积分10
12秒前
旺旺应助刻苦若冰采纳,获得10
12秒前
Accept应助song24517采纳,获得20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678