Few-Shot Industrial Meter Detection Based on Sim-to-Real Domain Adaptation and Category Augmentation

分类器(UML) 领域(数学分析) 人工智能 计算机科学 域适应 目标检测 符号 机器学习 计算机视觉 模式识别(心理学) 数学 算术 数学分析
作者
Ming Zeng,Zhong Shunhe,Leijiao Ge
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10
标识
DOI:10.1109/tim.2023.3332939
摘要

Rapid and accurate detection of industrial meters in complex scenarios is an essential step toward inspection robot automatic meter recognition. Deep learning (DL) is a promising solution. However, due to the lack of large-scale public industrial meter image datasets, it is very difficult to train industrial meter detection models based on DL. Therefore, in this article, we combine the image generation technique and sim-to-real domain adaption technique to address the problem of few-shot industrial meter detection in complex scenarios. Specifically, we use Stable Diffusion to generate abundant virtual samples as the source domain dataset by inputting textual prompts. A small number of real samples are used as the target domain dataset. In addition, to attenuate the effect of domain shift, we propose a domain adaptation object detection framework based on category augmentation. This framework introduces domain information into the classifier and combines uncertainty estimation, which not only eliminates the training of domain classifiers in traditional adversarial learning-based domain adaptation algorithms but also facilitates feature alignment between source domain and target domain. Experiments show that the framework achieves 50.8% mAP50:95 and $55.0\% F1$ score, which outperforms the network trained with only real images by 8.3% mAP50:95 and $8.7\% F1$ score. We can achieve close performance with only 25% of the target domain samples with the help of the source domain dataset. Moreover, our method also outperforms other state-of-the-art methods in supervised domain adaptation object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nj完成签到,获得积分10
1秒前
1秒前
所所应助欧欧采纳,获得10
1秒前
Monest应助阔达磬采纳,获得10
3秒前
苏瑾发布了新的文献求助10
3秒前
4秒前
4秒前
hexiaoxiao完成签到,获得积分10
5秒前
一恒完成签到,获得积分10
5秒前
冉飞艳发布了新的文献求助10
6秒前
淡淡成危发布了新的文献求助10
6秒前
思源应助痴情的语堂采纳,获得10
7秒前
8秒前
kkxxyyy发布了新的文献求助10
9秒前
9秒前
123mutouren完成签到,获得积分10
9秒前
周周完成签到,获得积分10
10秒前
11秒前
111发布了新的文献求助10
12秒前
12秒前
jojo发布了新的文献求助10
12秒前
比巴卜完成签到,获得积分10
13秒前
VaVa应助俭朴的期待采纳,获得10
13秒前
嘤嘤怪应助忧伤的书易采纳,获得10
14秒前
NexusExplorer应助mrmrer采纳,获得10
14秒前
嘤嘤怪应助忧伤的书易采纳,获得10
14秒前
36456657应助忧伤的书易采纳,获得10
14秒前
15秒前
15秒前
15秒前
欧欧发布了新的文献求助10
15秒前
17秒前
17秒前
Xxxx发布了新的文献求助10
17秒前
17秒前
tgd发布了新的文献求助10
17秒前
小米饭发布了新的文献求助10
17秒前
轻松大娘完成签到,获得积分10
18秒前
19秒前
hk1900发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302470
求助须知:如何正确求助?哪些是违规求助? 2936959
关于积分的说明 8479422
捐赠科研通 2610753
什么是DOI,文献DOI怎么找? 1425334
科研通“疑难数据库(出版商)”最低求助积分说明 662340
邀请新用户注册赠送积分活动 646652