Applications of machine learning in microbial natural product drug discovery

药物发现 业务流程发现 化学空间 计算机科学 天然产物 过程(计算) 计算生物学 生化工程 数据科学 人工智能 机器学习 生物 生物信息学 工程类 在制品 生物化学 运营管理 业务流程建模 操作系统 业务流程
作者
Autumn Arnold,Jeremie Alexander,Gary Liu,Jonathan Stokes
出处
期刊:Expert Opinion on Drug Discovery [Taylor & Francis]
卷期号:18 (11): 1259-1272 被引量:7
标识
DOI:10.1080/17460441.2023.2251400
摘要

ABSTRACTIntroduction Natural products (NPs) are a desirable source of new therapeutics due to their structural diversity and evolutionarily optimized bioactivities. NPs and their derivatives account for roughly 70% of approved pharmaceuticals. However, the rate at which novel NPs are discovered has decreased. To accelerate the microbial NP discovery process, machine learning (ML) is being applied to numerous areas of NP discovery and development.Areas covered This review explores the utility of ML at various phases of the microbial NP drug discovery pipeline, discussing concrete examples throughout each major phase: genome mining, dereplication, and biological target prediction. Moreover, the authors discuss how ML approaches can be applied to semi-synthetic approaches to drug discovery.Expert opinion Despite the important role that microbial NPs play in the development of novel drugs, their discovery has declined due to challenges associated with the conventional discovery process. ML is positioned to overcome these limitations given its ability to model complex datasets and generalize to novel chemical and sequence space. Unsurprisingly, ML comes with its own limitations that must be considered for its successful implementation. The authors stress the importance of continuing to build high quality and open access NP datasets to further increase the utility of ML in NP discovery.KEYWORDS: Artificial IntelligenceMachine LearningNatural ProductsDrug DiscoveryGenome MiningDereplicationTarget Prediction Article highlights Microbial natural products are a promising source of novel therapeutics.Machine learning approaches are being increasingly applied to relieve bottlenecks throughout the microbial natural product discovery process.Machine learning has allowed for the exploration of novel biosynthetic gene clusters due to its ability to generalize to new sequence spaces.Machine learning has been applied to the interpretation of metabolomic data, which can be leveraged for the efficient dereplication of microbial secondary metabolites.Machine learning has facilitated biological target prediction, providing insight into the mechanisms of action of natural products.Generative machine learning models have improved the design of natural product-inspired chemical libraries by preserving various chemical features that are important for the bioactivity of natural products.Declaration of interestJM Stokes is co-founder and scientific director of Phare Bio. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingThe authors are funded by the David Braley Centre for Antibiotic Discovery, the Natural Sciences and Engineering Research Council of Canada and the Weston Family Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
今后应助威武灵阳采纳,获得10
3秒前
3秒前
星辰大海应助In采纳,获得10
6秒前
IDA发布了新的文献求助10
6秒前
111完成签到,获得积分10
7秒前
空白发布了新的文献求助10
8秒前
9秒前
10秒前
bkagyin应助NXK采纳,获得10
11秒前
kkk发布了新的文献求助10
12秒前
科研通AI5应助靓丽的飞槐采纳,获得10
12秒前
柚子蟹应助sun采纳,获得30
14秒前
IDA完成签到,获得积分20
14秒前
14秒前
15秒前
汉堡包应助LL采纳,获得10
15秒前
In完成签到,获得积分10
16秒前
NexusExplorer应助发文章鸭采纳,获得10
16秒前
18秒前
yun发布了新的文献求助30
19秒前
kkk完成签到,获得积分20
21秒前
12发布了新的文献求助10
21秒前
LL发布了新的文献求助10
22秒前
22秒前
Huang完成签到 ,获得积分0
23秒前
直率手机完成签到,获得积分10
23秒前
23秒前
四夕完成签到 ,获得积分10
27秒前
那个笨笨完成签到,获得积分10
27秒前
lilac发布了新的文献求助50
27秒前
研友_VZG7GZ应助AiQi采纳,获得10
28秒前
clyhg完成签到,获得积分10
28秒前
29秒前
David完成签到 ,获得积分10
29秒前
qw1完成签到,获得积分20
32秒前
ding应助无无采纳,获得10
34秒前
Hayat发布了新的文献求助10
35秒前
yun完成签到,获得积分10
36秒前
39秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901