亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Applications of machine learning in microbial natural product drug discovery

药物发现 业务流程发现 化学空间 计算机科学 天然产物 过程(计算) 计算生物学 生化工程 数据科学 人工智能 机器学习 生物 生物信息学 工程类 在制品 生物化学 运营管理 业务流程建模 操作系统 业务流程
作者
Autumn Arnold,Jeremie Alexander,Gary Liu,Jonathan Stokes
出处
期刊:Expert Opinion on Drug Discovery [Informa]
卷期号:18 (11): 1259-1272 被引量:3
标识
DOI:10.1080/17460441.2023.2251400
摘要

ABSTRACTIntroduction Natural products (NPs) are a desirable source of new therapeutics due to their structural diversity and evolutionarily optimized bioactivities. NPs and their derivatives account for roughly 70% of approved pharmaceuticals. However, the rate at which novel NPs are discovered has decreased. To accelerate the microbial NP discovery process, machine learning (ML) is being applied to numerous areas of NP discovery and development.Areas covered This review explores the utility of ML at various phases of the microbial NP drug discovery pipeline, discussing concrete examples throughout each major phase: genome mining, dereplication, and biological target prediction. Moreover, the authors discuss how ML approaches can be applied to semi-synthetic approaches to drug discovery.Expert opinion Despite the important role that microbial NPs play in the development of novel drugs, their discovery has declined due to challenges associated with the conventional discovery process. ML is positioned to overcome these limitations given its ability to model complex datasets and generalize to novel chemical and sequence space. Unsurprisingly, ML comes with its own limitations that must be considered for its successful implementation. The authors stress the importance of continuing to build high quality and open access NP datasets to further increase the utility of ML in NP discovery.KEYWORDS: Artificial IntelligenceMachine LearningNatural ProductsDrug DiscoveryGenome MiningDereplicationTarget Prediction Article highlights Microbial natural products are a promising source of novel therapeutics.Machine learning approaches are being increasingly applied to relieve bottlenecks throughout the microbial natural product discovery process.Machine learning has allowed for the exploration of novel biosynthetic gene clusters due to its ability to generalize to new sequence spaces.Machine learning has been applied to the interpretation of metabolomic data, which can be leveraged for the efficient dereplication of microbial secondary metabolites.Machine learning has facilitated biological target prediction, providing insight into the mechanisms of action of natural products.Generative machine learning models have improved the design of natural product-inspired chemical libraries by preserving various chemical features that are important for the bioactivity of natural products.Declaration of interestJM Stokes is co-founder and scientific director of Phare Bio. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingThe authors are funded by the David Braley Centre for Antibiotic Discovery, the Natural Sciences and Engineering Research Council of Canada and the Weston Family Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
15秒前
34秒前
健忘绿茶发布了新的文献求助10
38秒前
英姑应助科研通管家采纳,获得10
48秒前
赘婿应助对流域采纳,获得10
58秒前
1分钟前
对流域发布了新的文献求助10
1分钟前
1分钟前
裴敏发布了新的文献求助10
1分钟前
1分钟前
梵星完成签到 ,获得积分10
1分钟前
2分钟前
健忘绿茶完成签到,获得积分10
2分钟前
机灵自中发布了新的文献求助10
2分钟前
呃呃诶发布了新的文献求助20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
可爱的函函应助机灵自中采纳,获得10
2分钟前
科研通AI2S应助Mia采纳,获得10
2分钟前
科研通AI2S应助SDNUDRUG采纳,获得10
3分钟前
小王完成签到 ,获得积分10
4分钟前
充电宝应助泡面小猪采纳,获得10
4分钟前
4分钟前
lcs完成签到,获得积分10
4分钟前
xiuxiuzhang完成签到 ,获得积分10
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
4分钟前
呃呃诶完成签到,获得积分10
4分钟前
4分钟前
FashionBoy应助秋刀鱼不过期采纳,获得10
5分钟前
5分钟前
橙花完成签到 ,获得积分10
5分钟前
lalala大鸭梨关注了科研通微信公众号
5分钟前
oleskarabach发布了新的文献求助10
5分钟前
包容新蕾完成签到 ,获得积分10
6分钟前
安静的瑾瑜完成签到 ,获得积分10
6分钟前
6分钟前
田様应助科研通管家采纳,获得10
6分钟前
机灵自中发布了新的文献求助10
6分钟前
彭于晏应助对流域采纳,获得10
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784139
捐赠科研通 2444060
什么是DOI,文献DOI怎么找? 1299685
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997