Decahedral BiVO4/tubular g-C3N4 S-scheme heterojunction photocatalyst for formaldehyde removal: Charge transfer pathway and deactivation mechanism

光催化 异质结 X射线光电子能谱 甲醛 化学工程 材料科学 光化学 载流子 纳米技术 化学 催化作用 光电子学 有机化学 工程类
作者
Yuwei Li,Shuzhi Li,Min-bo Zhao,Wan-Li Ma
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:327: 124966-124966 被引量:22
标识
DOI:10.1016/j.seppur.2023.124966
摘要

Designing a durable and efficient heterojunction photocatalyst for the removal of indoor air pollutants has attracted significant attentions. However, the interfacial charge transfer pathway and deactivation mechanism of photocatalysts are still challenges. In this study, the decahedral BiVO4/tubular g-C3N4 (BiVO4/TCN) S-scheme heterojunction photocatalyst was synthesized, which exhibited excellent photocatalytic activity and stability for the removal of formaldehyde (HCHO) in a continuous-flow reactor. The formation of the S-scheme heterojunction promoted spatial separation of charges, enhanced the redox capability, and maintained favorable charge carrier potentials. Based on Central Composite Design, a semi-empirical equation was successfully established to predict the removal efficiency of HCHO, and photocatalyst load and initial concentration played important roles in the removal of HCHO. The interfacial charge transfer pathway in the S-scheme heterojunction was clearly confirmed through photo-irradiated Kelvin probe and in situ irradiated X-ray photoelectron spectroscopy analysis. The superficial state changes of BiVO4/TCN before and after the reaction indicated that the formation of coke could inhibit separation and transfer of electron-hole pairs, resulting in a slight decrease in photocatalytic activity. In summary, this study not only presents an effective technology for constructing S-scheme heterojunction photocatalyst, but also offers a new insight on the deactivation mechanism of photocatalyst during removal of volatile organic compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
LZJ发布了新的文献求助10
刚刚
勾陈一发布了新的文献求助10
1秒前
1秒前
渊崖曙春应助雪BYX采纳,获得10
1秒前
2秒前
科研通AI5应助wangkeke采纳,获得10
2秒前
成事在人307完成签到,获得积分10
2秒前
sxy0604发布了新的文献求助10
3秒前
orixero应助young采纳,获得10
3秒前
3秒前
zhancalin完成签到,获得积分10
3秒前
酸菜鱼火锅完成签到,获得积分10
4秒前
思源应助unique采纳,获得10
4秒前
Xu完成签到,获得积分10
4秒前
5秒前
6秒前
烟花应助美琦采纳,获得10
6秒前
6秒前
乔心发布了新的文献求助10
6秒前
核桃包好吃完成签到,获得积分20
7秒前
伶俐的小白菜完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
guyan发布了新的文献求助10
9秒前
仁爱书白完成签到,获得积分10
9秒前
科目三应助lmn采纳,获得10
9秒前
ding应助乔心采纳,获得10
9秒前
10秒前
张老汉发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
12秒前
科研通AI5应助xolen采纳,获得10
12秒前
仁爱书白发布了新的文献求助10
12秒前
请叫我风吹麦浪应助璿_采纳,获得10
13秒前
Fern发布了新的文献求助10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476842
求助须知:如何正确求助?哪些是违规求助? 3068424
关于积分的说明 9107761
捐赠科研通 2759834
什么是DOI,文献DOI怎么找? 1514308
邀请新用户注册赠送积分活动 700220
科研通“疑难数据库(出版商)”最低求助积分说明 699399