A Transfer Learning Approach for Facial Paralysis Severity Detection

计算机科学 概化理论 面瘫 人工智能 麻痹 学习迁移 深度学习 机器学习 面子(社会学概念) 面部表情 模式识别(心理学) 语音识别 心理学 医学 发展心理学 社会科学 替代医学 病理 精神科 社会学
作者
Wasif Ali,Muhammad Imran,Muhammad Usman Yaseen,Khursheed Aurangzeb,Nouman Ashraf,Sheraz Aslam
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 127492-127508 被引量:6
标识
DOI:10.1109/access.2023.3330242
摘要

Facial paralysis is a debilitating condition that weakens or damages facial muscles resulting in asymmetric or abnormal facial movements. To aid in the diagnosis and rehabilitation of facial paralysis, researchers have developed machine learning and deep learning computer-aided diagnosis systems. However, machine learning models have limitations as they rely on facial landmark techniques and manual face palsy region extraction methods to obtain spatial information. Moreover, deep learning models need large, labelled datasets for training whereas existing available facial paralysis datasets are small and restricted. This presents significant challenges, including difficulties in data acquisition, insufficient patient numbers, and inadequate diversity within the datasets. These limitations can potentially restrict the generalizability of these models and introduce biases in the resulting outcomes. In this study, we propose an approach for the diagnosis and grading of facial paralysis comprised of two datasets, one from MEEI (Massachusetts Eye and Ear Infirmary) videos of patients and the other from the YFP (YouTube Face Palsy) dataset. The model uses a transfer learning approach to fine-tune the VGGFace model, which is pre-trained on facial images, on the prepared datasets for facial paralysis. The resultant model was subsequently renamed FP-VGGFace for the purpose of this research. Additionally, two more pre-trained models on facial images, ResNet50 and VGG16, are also fine-tuned for the facial paralysis task. This was undertaken to conduct a performance comparison of multiple models on the prepared dataset. The findings indicate that the models exhibit high accuracy, benefiting from pre-training on a diverse dataset that enables the capture of spatial information from facial images. The FP-VGGFace model achieves the best accuracy (99.3%) and F1-score (99.3%) surpassing all benchmark models. This study underscores the potential of utilizing pre-trained deep learning models for the diagnosis and rehabilitation of facial paralysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
小胡发布了新的文献求助10
10秒前
陈徐钖发布了新的文献求助10
12秒前
我不到啊完成签到,获得积分10
12秒前
12秒前
ffw1完成签到,获得积分10
13秒前
yzhang完成签到,获得积分10
14秒前
哈哈哈完成签到,获得积分10
14秒前
dong发布了新的文献求助10
19秒前
子车茗应助cc采纳,获得30
20秒前
陈徐钖完成签到,获得积分10
20秒前
Sunshine发布了新的文献求助10
21秒前
24秒前
sfafasfsdf完成签到,获得积分10
25秒前
28秒前
桐桐应助yzhang采纳,获得10
28秒前
oligo完成签到,获得积分10
28秒前
29秒前
干净吐司发布了新的文献求助30
30秒前
蔡强完成签到,获得积分10
30秒前
paixxxxx完成签到,获得积分10
32秒前
Jasper应助小胡采纳,获得10
32秒前
zzz发布了新的文献求助10
33秒前
积极的忆曼完成签到,获得积分10
34秒前
韵掀发布了新的文献求助10
36秒前
37秒前
NexusExplorer应助huang采纳,获得10
38秒前
39秒前
萨阿呢完成签到,获得积分10
40秒前
Sunshine完成签到,获得积分20
40秒前
蔡强发布了新的文献求助10
41秒前
42秒前
zzz完成签到,获得积分10
43秒前
呆呆发布了新的文献求助20
43秒前
无奈曼云完成签到,获得积分10
43秒前
44秒前
科研通AI2S应助干净吐司采纳,获得10
44秒前
姜汁完成签到 ,获得积分10
45秒前
CCCC完成签到,获得积分10
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304435
求助须知:如何正确求助?哪些是违规求助? 2938356
关于积分的说明 8488527
捐赠科研通 2612858
什么是DOI,文献DOI怎么找? 1426905
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647376