Boundary guided network with two-stage transfer learning for gastrointestinal polyps segmentation

人工智能 计算机科学 分割 模式识别(心理学) 杠杆(统计) 图像分割 棱锥(几何) 特征提取 特征(语言学) 边界(拓扑) 学习迁移 计算机视觉 数学 数学分析 哲学 语言学 几何学
作者
Sheng Li,Xiaoheng Tang,Bo Cao,Yuyang Peng,Xiongxiong He,Shufang Ye,Fei Dai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122503-122503 被引量:9
标识
DOI:10.1016/j.eswa.2023.122503
摘要

The automated segmentation of polyps plays a crucial role in the early diagnosis and treatment of gastrointestinal diseases. However, due to the diversity of polyp lesions and complex imaging environment, the accurate identification of the true lesion area is challenging, especially for small polyps. The blurred boundary of polyps can also result in over or under-segmentation issues. This research proposes a boundary-guided network with two-stage transfer learning: (1) the network is trained to determine the region of interest for polyp lesions and save the initial weights; (2) transfer learning is applied to leverage the learned prior knowledge to perform fine segmentation of the region of interest. It can accurately identify the lesion area, thereby achieving good segmentations, especially for small polyps. Besides, the pyramid vision transformer is used as the feature backbone. Boundary feature extraction module (BFE), deep feature extraction module (DFE), and multi-scale fusion module (MF) are designed to generate boundary maps that guide the decoder in generating prediction maps. Experimental results show that the proposed method outperforms the comparative methods on four public datasets and a private dataset (including gastric polyps), with mDSC scores exceeding 85%. Notably, on the ETIS-Larib dataset, the mDSC score is improved by 11.7% compared to methods used for comparison.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助芋圆采纳,获得10
刚刚
刚刚
刚刚
乐乐应助戴帽子采纳,获得10
1秒前
俊逸若之完成签到,获得积分20
1秒前
mxl发布了新的文献求助10
1秒前
甜甜青旋完成签到,获得积分10
2秒前
2秒前
2秒前
帅气老张发布了新的文献求助10
2秒前
2秒前
2秒前
无辜日记本完成签到,获得积分10
3秒前
3秒前
浮游应助伊伊采纳,获得10
4秒前
4秒前
4秒前
5秒前
乐子发布了新的文献求助10
6秒前
LNVEFC发布了新的文献求助10
6秒前
6秒前
RUI发布了新的文献求助10
7秒前
俊逸若之发布了新的文献求助10
7秒前
pandaheld发布了新的文献求助50
7秒前
花花发布了新的文献求助10
7秒前
7秒前
8秒前
科研通AI6应助称心的板栗采纳,获得10
8秒前
迅速的寻绿完成签到,获得积分10
8秒前
木木发布了新的文献求助10
8秒前
xiaozhu完成签到,获得积分10
8秒前
8秒前
小蘑菇应助自觉飞风采纳,获得10
8秒前
wjxcl完成签到,获得积分10
9秒前
学术裁缝应助MuMay采纳,获得10
9秒前
慕青应助Dotuu采纳,获得10
9秒前
9秒前
搜集达人应助yfy采纳,获得10
9秒前
不想长大发布了新的文献求助10
10秒前
庄生发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5399809
求助须知:如何正确求助?哪些是违规求助? 4519252
关于积分的说明 14074229
捐赠科研通 4432023
什么是DOI,文献DOI怎么找? 2433408
邀请新用户注册赠送积分活动 1425754
关于科研通互助平台的介绍 1404500