Boundary guided network with two-stage transfer learning for gastrointestinal polyps segmentation

人工智能 计算机科学 分割 模式识别(心理学) 杠杆(统计) 图像分割 棱锥(几何) 特征提取 特征(语言学) 边界(拓扑) 学习迁移 计算机视觉 数学 数学分析 哲学 语言学 几何学
作者
Sheng Li,Xiaoheng Tang,Bo Cao,Yuyang Peng,Xiongxiong He,Shufang Ye,Fei Dai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122503-122503 被引量:5
标识
DOI:10.1016/j.eswa.2023.122503
摘要

The automated segmentation of polyps plays a crucial role in the early diagnosis and treatment of gastrointestinal diseases. However, due to the diversity of polyp lesions and complex imaging environment, the accurate identification of the true lesion area is challenging, especially for small polyps. The blurred boundary of polyps can also result in over or under-segmentation issues. This research proposes a boundary-guided network with two-stage transfer learning: (1) the network is trained to determine the region of interest for polyp lesions and save the initial weights; (2) transfer learning is applied to leverage the learned prior knowledge to perform fine segmentation of the region of interest. It can accurately identify the lesion area, thereby achieving good segmentations, especially for small polyps. Besides, the pyramid vision transformer is used as the feature backbone. Boundary feature extraction module (BFE), deep feature extraction module (DFE), and multi-scale fusion module (MF) are designed to generate boundary maps that guide the decoder in generating prediction maps. Experimental results show that the proposed method outperforms the comparative methods on four public datasets and a private dataset (including gastric polyps), with mDSC scores exceeding 85%. Notably, on the ETIS-Larib dataset, the mDSC score is improved by 11.7% compared to methods used for comparison.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强怀绿完成签到,获得积分10
1秒前
1秒前
万豪完成签到,获得积分10
1秒前
科研通AI2S应助汪金采纳,获得10
2秒前
2秒前
鲜艳的棒棒糖完成签到,获得积分10
2秒前
超级如风发布了新的文献求助10
3秒前
3秒前
zxldylan完成签到,获得积分10
3秒前
Theprisoners发布了新的文献求助10
3秒前
takr1f发布了新的文献求助10
3秒前
yyyyqqq发布了新的文献求助10
4秒前
烟花应助jokerli采纳,获得10
5秒前
7秒前
星辰大海应助别闹闹采纳,获得10
7秒前
脑洞疼应助整点儿薯条采纳,获得10
8秒前
天天快乐应助兰兰采纳,获得10
9秒前
英俊的铭应助虫子采纳,获得10
10秒前
10秒前
921发布了新的文献求助10
10秒前
orixero应助尼莫采纳,获得10
12秒前
13秒前
13秒前
MrIShelter完成签到,获得积分10
15秒前
16秒前
汪金发布了新的文献求助10
18秒前
18秒前
19秒前
Akim应助风趣的爆米花采纳,获得10
20秒前
pluto应助科研通管家采纳,获得10
20秒前
8R60d8应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
20秒前
蜡笔小孙应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
鸣笛应助科研通管家采纳,获得10
21秒前
pluto应助科研通管家采纳,获得10
21秒前
江峰应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537519
求助须知:如何正确求助?哪些是违规求助? 3972505
关于积分的说明 12306111
捐赠科研通 3639199
什么是DOI,文献DOI怎么找? 2003739
邀请新用户注册赠送积分活动 1039068
科研通“疑难数据库(出版商)”最低求助积分说明 928520