Boundary guided network with two-stage transfer learning for gastrointestinal polyps segmentation

人工智能 计算机科学 分割 模式识别(心理学) 杠杆(统计) 图像分割 棱锥(几何) 特征提取 特征(语言学) 边界(拓扑) 学习迁移 计算机视觉 数学 数学分析 哲学 语言学 几何学
作者
Sheng Li,Xiaoheng Tang,Bo Cao,Yuyang Peng,Xiongxiong He,Shufang Ye,Fei Dai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122503-122503 被引量:9
标识
DOI:10.1016/j.eswa.2023.122503
摘要

The automated segmentation of polyps plays a crucial role in the early diagnosis and treatment of gastrointestinal diseases. However, due to the diversity of polyp lesions and complex imaging environment, the accurate identification of the true lesion area is challenging, especially for small polyps. The blurred boundary of polyps can also result in over or under-segmentation issues. This research proposes a boundary-guided network with two-stage transfer learning: (1) the network is trained to determine the region of interest for polyp lesions and save the initial weights; (2) transfer learning is applied to leverage the learned prior knowledge to perform fine segmentation of the region of interest. It can accurately identify the lesion area, thereby achieving good segmentations, especially for small polyps. Besides, the pyramid vision transformer is used as the feature backbone. Boundary feature extraction module (BFE), deep feature extraction module (DFE), and multi-scale fusion module (MF) are designed to generate boundary maps that guide the decoder in generating prediction maps. Experimental results show that the proposed method outperforms the comparative methods on four public datasets and a private dataset (including gastric polyps), with mDSC scores exceeding 85%. Notably, on the ETIS-Larib dataset, the mDSC score is improved by 11.7% compared to methods used for comparison.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
3秒前
整齐千柳发布了新的文献求助10
4秒前
loren完成签到 ,获得积分10
5秒前
Mireia完成签到,获得积分10
5秒前
飘逸灰狼发布了新的文献求助10
6秒前
慕青应助STP顶峰相见采纳,获得10
7秒前
7秒前
Ww完成签到,获得积分10
7秒前
咩啊咩吖发布了新的文献求助10
7秒前
NexusExplorer应助Li采纳,获得10
8秒前
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
zcl应助科研通管家采纳,获得20
9秒前
Koalas应助Stroeve采纳,获得20
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
10秒前
青青完成签到 ,获得积分10
10秒前
10秒前
Tracy完成签到,获得积分10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得30
10秒前
10秒前
10秒前
10秒前
Jasper应助科研通管家采纳,获得30
10秒前
11秒前
11秒前
12秒前
科研通AI6应助段李莲采纳,获得10
13秒前
HNDuan发布了新的文献求助50
13秒前
yzy关注了科研通微信公众号
14秒前
等待的鸡翅完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226204
求助须知:如何正确求助?哪些是违规求助? 4397787
关于积分的说明 13687311
捐赠科研通 4262249
什么是DOI,文献DOI怎么找? 2339037
邀请新用户注册赠送积分活动 1336434
关于科研通互助平台的介绍 1292428