Classification of attention deficit/hyperactivity disorder based on EEG signals using a EEG-Transformer model ∗

脑电图 计算机科学 变压器 人工智能 卷积神经网络 注意缺陷多动障碍 机器学习 模式识别(心理学) 心理学 工程类 神经科学 精神科 电压 电气工程
作者
Yuchao He,Xin Wang,Zijian Győző Yang,Lingbin Xue,Yuming Chen,Junyu Ji,Feng Wan,Subhas Chandra Mukhopadhyay,Lina Men,Michael C. F. Tong,Guanglin Li,Shixiong Chen
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (5): 056013-056013 被引量:4
标识
DOI:10.1088/1741-2552/acf7f5
摘要

Abstract Objective . Attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in adolescents that can seriously impair a person’s attention function, cognitive processes, and learning ability. Currently, clinicians primarily diagnose patients based on the subjective assessments of the Diagnostic and Statistical Manual of Mental Disorders-5, which can lead to delayed diagnosis of ADHD and even misdiagnosis due to low diagnostic efficiency and lack of well-trained diagnostic experts. Deep learning of electroencephalogram (EEG) signals recorded from ADHD patients could provide an objective and accurate method to assist physicians in clinical diagnosis. Approach . This paper proposes the EEG-Transformer deep learning model, which is based on the attention mechanism in the traditional Transformer model, and can perform feature extraction and signal classification processing for the characteristics of EEG signals. A comprehensive comparison was made between the proposed transformer model and three existing convolutional neural network models. Main results . The results showed that the proposed EEG-Transformer model achieved an average accuracy of 95.85% and an average AUC value of 0.9926 with the fastest convergence speed, outperforming the other three models. The function and relationship of each module of the model are studied by ablation experiments. The model with optimal performance was identified by the optimization experiment. Significance . The EEG-Transformer model proposed in this paper can be used as an auxiliary tool for clinical diagnosis of ADHD, and at the same time provides a basic model for transferable learning in the field of EEG signal classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助先吃饭吧采纳,获得10
5秒前
5秒前
6秒前
爆米花应助妮妮采纳,获得50
6秒前
tuanheqi应助滕皓轩采纳,获得30
7秒前
7秒前
深情安青应助懒得起名采纳,获得10
7秒前
8秒前
WHY发布了新的文献求助10
8秒前
9秒前
混紫发布了新的文献求助10
10秒前
混紫发布了新的文献求助10
10秒前
混紫发布了新的文献求助10
12秒前
12秒前
nenoaowu发布了新的文献求助10
13秒前
13秒前
taipingyang完成签到,获得积分10
15秒前
Arthur发布了新的文献求助10
16秒前
稳重飞飞完成签到,获得积分10
16秒前
巴啦啦啦发布了新的文献求助10
18秒前
18秒前
小鑫完成签到,获得积分10
18秒前
123发布了新的文献求助10
20秒前
LLL完成签到,获得积分10
21秒前
先吃饭吧发布了新的文献求助10
21秒前
21秒前
22秒前
阳光的麦片完成签到,获得积分10
23秒前
23秒前
XudongHou发布了新的文献求助10
27秒前
缥缈宛白完成签到,获得积分10
28秒前
xcky0917发布了新的文献求助10
29秒前
29秒前
汉堡包应助Mrivy采纳,获得10
29秒前
30秒前
31秒前
管箴发布了新的文献求助10
33秒前
淡淡乐巧发布了新的文献求助10
34秒前
FashionBoy应助巴啦啦啦采纳,获得10
34秒前
lion关注了科研通微信公众号
36秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3383449
求助须知:如何正确求助?哪些是违规求助? 2997723
关于积分的说明 8776111
捐赠科研通 2683301
什么是DOI,文献DOI怎么找? 1469586
科研通“疑难数据库(出版商)”最低求助积分说明 679461
邀请新用户注册赠送积分活动 671744