平移(音频)
计算生物学
放大器
噬菌体展示
DNA测序
生物
单域抗体
DNA
抗体
遗传学
聚合酶链反应
基因
镜头(地质)
缩放
古生物学
作者
Michael J. Lowden,Eric K. Lei,Greg Hussack,Kevin A. Henry
出处
期刊:Methods in molecular biology
日期:2023-01-01
卷期号:: 489-540
被引量:2
标识
DOI:10.1007/978-1-0716-3381-6_26
摘要
Next-generation DNA sequencing (NGS) technologies have made it possible to interrogate antibody repertoires to unprecedented depths, typically via sequencing of cDNAs encoding immunoglobulin variable domains. In the absence of heavy-light chain pairing, the variable domains of heavy chain-only antibodies (HCAbs), referred to as single-domain antibodies (sdAbs), are uniquely amenable to NGS analyses. In this chapter, we provide simple and rapid protocols for producing and sequencing multiplexed immunoglobulin variable domain (VHH, VH, or VL) amplicons derived from a variety of sources using the Illumina MiSeq platform. Generation of such amplicon libraries is relatively inexpensive, requiring no specialized equipment and only a limited set of PCR primers. We also present several applications of NGS to sdAb discovery and engineering, including: (1) evaluation of phage-displayed sdAb library sequence diversity and monitoring of panning experiments; (2) identification of sdAbs of predetermined epitope specificity following competitive elution of phage-displayed sdAb libraries; (3) direct selection of B cells expressing antigen-specific, membrane-bound HCAb using antigen-coupled magnetic beads and identification of antigen-specific sdAbs, and (4) affinity maturation of lead sdAbs using tandem phage display selection and NGS. These methods can easily be adapted to other types of proteins and libraries and expand the utility of in vitro display technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI