Multi-scale spatial-temporal aware transformer for traffic prediction

计算机科学 数据挖掘 编码器 比例(比率) 变压器 实时计算 人工智能 地图学 地理 量子力学 操作系统 物理 电压
作者
Ran Tian,Chu Wang,Jia Hu,Zhongyu Ma
出处
期刊:Information Sciences [Elsevier]
卷期号:648: 119557-119557 被引量:14
标识
DOI:10.1016/j.ins.2023.119557
摘要

Traffic prediction is an important part of smart city management. Accurate traffic prediction can be deployed in urban applications such as congestion alerting and route planning, thus providing sustainable services to the public or relevant departments. Although some improvements have been made in existing traffic prediction methods, there are challenges due to the following: (1) Time series has multi-scale nature, that is, from different scale time ranges, traffic flow changes show different trends; (2) Spatial heterogeneity, meaning that traffic conditions in similar functional areas are usually similar. This task remains difficult. To address the above challenges, we propose a new spatial-temporal prediction method, namely Multi-Scale Spatial-Temporal Aware Transformer (MSSTAT), which is a Transformer architecture with multi-scale characteristics. Specifically, compared to the input of encoder, the input of different decoder layers has different scale information, MSSTAT synchronizes model the connection between time steps and scale information by a kind of Parallel Cross Multi-Head Attention, which gives each time step several times the perceived field while also being able to weaken the impact brought by anomaly point. In addition, to add connections between regions with similar functions, we map the traffic data of each node as a probability distribution and then measure the similarity between the nodes by the Wasserstein Distance, which leads to our proposed spatial-temporal aware adjacency matrix. Experimental results on four traffic flow datasets show that MSSTAT outperforms the state-of-the-art baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666完成签到,获得积分10
刚刚
1秒前
阿俊1212发布了新的文献求助10
1秒前
可以听见吗完成签到 ,获得积分10
2秒前
VDC应助xbf采纳,获得30
2秒前
张秋雨发布了新的文献求助10
2秒前
成就白秋发布了新的文献求助10
3秒前
情怀应助大侦探皮卡丘采纳,获得10
4秒前
许老头完成签到,获得积分10
4秒前
姜敏敏完成签到 ,获得积分10
6秒前
JMG完成签到,获得积分10
7秒前
SciGPT应助Three采纳,获得10
8秒前
8秒前
8秒前
警羽之翼完成签到,获得积分10
9秒前
科研通AI2S应助BOLIN采纳,获得10
9秒前
爆米花应助阿旭采纳,获得10
10秒前
化学渣完成签到 ,获得积分10
11秒前
Fairyvivi完成签到,获得积分10
11秒前
12秒前
12秒前
大模型应助刻苦小鸭子采纳,获得10
12秒前
13秒前
14秒前
赶路人发布了新的文献求助10
16秒前
17秒前
17秒前
科研通AI2S应助zkwzju采纳,获得10
17秒前
18秒前
动人的阁发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
19秒前
19秒前
警羽之翼发布了新的文献求助20
19秒前
xinlixi完成签到,获得积分0
20秒前
Lii完成签到 ,获得积分10
20秒前
WYJie完成签到,获得积分10
20秒前
CodeCraft应助xol采纳,获得10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248291
求助须知:如何正确求助?哪些是违规求助? 2891641
关于积分的说明 8268146
捐赠科研通 2559658
什么是DOI,文献DOI怎么找? 1388479
科研通“疑难数据库(出版商)”最低求助积分说明 650772
邀请新用户注册赠送积分活动 627698