Neuron–oligodendroglial interactions in health and malignant disease

神经科学 胶质瘤 生物 少突胶质细胞 神经元 髓鞘 神经可塑性 神经系统 中枢神经系统 癌症研究
作者
Kathryn R. Taylor,Michelle Monje
出处
期刊:Nature Reviews Neuroscience [Nature Portfolio]
卷期号:24 (12): 733-746 被引量:26
标识
DOI:10.1038/s41583-023-00744-3
摘要

Experience sculpts brain structure and function. Activity-dependent modulation of the myelinated infrastructure of the nervous system has emerged as a dimension of adaptive change during childhood development and in adulthood. Myelination is a richly dynamic process, with neuronal activity regulating oligodendrocyte precursor cell proliferation, oligodendrogenesis and myelin structural changes in some axonal subtypes and in some regions of the nervous system. This myelin plasticity and consequent changes to conduction velocity and circuit dynamics can powerfully influence neurological functions, including learning and memory. Conversely, disruption of the mechanisms mediating adaptive myelination can contribute to cognitive impairment. The robust effects of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, indicates that dysregulated or 'hijacked' mechanisms of myelin plasticity could similarly promote growth in this devastating group of brain cancers. Indeed, neuronal activity promotes the pathogenesis of many forms of glioma in preclinical models through activity-regulated paracrine factors and direct neuron-to-glioma synapses. This synaptic integration of glioma into neural circuits is central to tumour growth and invasion. Thus, not only do neuron–oligodendroglial interactions modulate neural circuit structure and function in the healthy brain, but neuron–glioma interactions also have important roles in the pathogenesis of glial malignancies. Neuron–oligodendroglial interactions modulate neural circuit structure and function in the healthy brain. In this Review, Taylor and Monje describe the accumulating evidence for how glial malignancies subvert and repurpose these powerful neuron–glial interactions to drive glioma pathophysiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的思柔完成签到,获得积分10
4秒前
Cnqaq发布了新的文献求助10
4秒前
4秒前
5秒前
爆米花应助aaa采纳,获得10
6秒前
Orange应助幸福的向彤采纳,获得10
7秒前
科研通AI5应助傲娇文博采纳,获得10
8秒前
渣渣发布了新的文献求助10
11秒前
cxh发布了新的文献求助10
11秒前
打工人发布了新的文献求助10
11秒前
14秒前
15秒前
16秒前
111完成签到 ,获得积分10
16秒前
JY发布了新的文献求助10
18秒前
19秒前
Hongni发布了新的文献求助20
19秒前
华仔应助哎呀采纳,获得10
21秒前
李知恩完成签到,获得积分10
21秒前
傲娇文博发布了新的文献求助10
21秒前
22秒前
22秒前
慕青应助yasuo采纳,获得10
26秒前
26秒前
tyy发布了新的文献求助30
27秒前
27秒前
ZXW完成签到,获得积分10
27秒前
28秒前
29秒前
29秒前
酷波er应助xcf6653采纳,获得10
31秒前
我爱学习发布了新的文献求助10
32秒前
aaa发布了新的文献求助10
32秒前
tyy完成签到,获得积分10
33秒前
34秒前
emmaguo713发布了新的文献求助10
34秒前
35秒前
整齐的曼安完成签到,获得积分10
36秒前
华枫发布了新的文献求助10
36秒前
xxxxu完成签到,获得积分20
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672573
求助须知:如何正确求助?哪些是违规求助? 3228837
关于积分的说明 9782155
捐赠科研通 2939284
什么是DOI,文献DOI怎么找? 1610727
邀请新用户注册赠送积分活动 760709
科研通“疑难数据库(出版商)”最低求助积分说明 736198