Photo-enzyme-polymerized hydrogel platform exhibits photo-switchable redox reversibility for diabetic wound healing

氧化还原 化学 黄素组 脱氢酶 伤口愈合 电子传输链 电子转移 抗氧化剂 生物物理学 生物化学 光化学 有机化学 生物 免疫学
作者
Min Hu,Xia Wang,Yujing Tang,Xingyue He,Hongdou Shen,Hui Pan,Yinghui Shang,Dongbei Wu,Sheng‐Cai Zheng,Qigang Wang
出处
期刊:Nano Today [Elsevier]
卷期号:53: 102028-102028 被引量:3
标识
DOI:10.1016/j.nantod.2023.102028
摘要

Redox homeostasis catalyzed by series oxidoreductases is important to maintain normal physiological functions, including mutually contradictory reactive oxygen species generation or reduction by separated enzyme regulation during cellular metabolism. The unidirectional enzyme regulation of redox homeostasis by biocatalytic reaction is an emerging catalytic medicine approach to disease biomimetic treatments. Bioinspired by photosynthesis, an efficient photo-enzyme-coupled hydrogel platform (Gel) with a spatio-temporally controlled hydrogel network was constructed through photoenzymatic-initiated radical polymerization in the absence of the corresponding enzyme substrate. Then, the coupling mechanism of light-induced electron transfer-enzyme activity center allosteric was explored through free radical analysis and theoretical calculations. The photo-switchable redox performance has been demonstrated based on the special anaerobic dehydrogenases, the flavin adenine dinucleotide (FAD)-centered dihydrolipoamide dehydrogenase (DLD) platform. At last, both in vitro and in vivo biological effects have been verified to evaluate the bidirectional oxidation/antioxidant modulation for the complicated wound healing in diabetic mice and wound-infected animals. The photoenzymatic coupling dehydrogenase-laden hydrogel platform proposed in this work provides ideas for the engineering design of enzymes, and the physical-biochemical regulatory mechanisms also offers a theoretical basis for controllable activation of enzyme activity, allowing for potential biomedical applications in metabolic processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
towanda完成签到,获得积分10
1秒前
与离完成签到 ,获得积分10
1秒前
小米完成签到,获得积分10
2秒前
SciGPT应助墨丿筠采纳,获得10
2秒前
风的季节完成签到,获得积分10
2秒前
abc1122完成签到,获得积分10
3秒前
4秒前
Wyoou完成签到,获得积分10
4秒前
5秒前
领导范儿应助卓涵柏采纳,获得10
5秒前
迷你的雁枫完成签到 ,获得积分10
5秒前
yilin完成签到,获得积分10
7秒前
liangxianli完成签到,获得积分10
7秒前
MIST完成签到,获得积分10
8秒前
粥粥爱糊糊完成签到,获得积分10
9秒前
文小杰发布了新的文献求助10
9秒前
传统的寒凝完成签到,获得积分10
9秒前
墨丿筠完成签到,获得积分10
9秒前
kx完成签到,获得积分10
9秒前
ZX801完成签到 ,获得积分10
9秒前
10秒前
10秒前
大吴克发布了新的文献求助10
11秒前
丘比特应助无限的哈密瓜采纳,获得10
11秒前
mengli完成签到 ,获得积分10
11秒前
YUU完成签到,获得积分10
11秒前
桐桐应助无所屌谓采纳,获得10
12秒前
13秒前
13秒前
Orange应助小罗同学采纳,获得10
13秒前
13秒前
三三完成签到,获得积分10
13秒前
隐形的傲易完成签到 ,获得积分10
13秒前
mt应助中二少女爱喝可乐采纳,获得10
14秒前
大棒槌完成签到,获得积分10
14秒前
杜好好完成签到,获得积分0
15秒前
蒋蒋蒋发布了新的文献求助10
15秒前
16秒前
16秒前
光亮面包完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910