When Urban Region Profiling Meets Large Language Models

仿形(计算机编程) 计算机科学 杠杆(统计) 城市规划 自然语言处理 人工智能 自然语言 工程类 土木工程 操作系统
作者
Yibo Yan,Haomin Wen,Siru Zhong,Wei Chen,Haodong Chen,Qingsong Wen,Roger Zimmermann,Yuxuan Liang
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2310.18340
摘要

Urban region profiling from web-sourced data is of utmost importance for urban planning and sustainable development. We are witnessing a rising trend of LLMs for various fields, especially dealing with multi-modal data research such as vision-language learning, where the text modality serves as a supplement information for the image. Since textual modality has never been introduced into modality combinations in urban region profiling, we aim to answer two fundamental questions in this paper: i) Can textual modality enhance urban region profiling? ii) and if so, in what ways and with regard to which aspects? To answer the questions, we leverage the power of Large Language Models (LLMs) and introduce the first-ever LLM-enhanced framework that integrates the knowledge of textual modality into urban imagery profiling, named LLM-enhanced Urban Region Profiling with Contrastive Language-Image Pretraining (UrbanCLIP). Specifically, it first generates a detailed textual description for each satellite image by an open-source Image-to-Text LLM. Then, the model is trained on the image-text pairs, seamlessly unifying natural language supervision for urban visual representation learning, jointly with contrastive loss and language modeling loss. Results on predicting three urban indicators in four major Chinese metropolises demonstrate its superior performance, with an average improvement of 6.1% on R^2 compared to the state-of-the-art methods. Our code and the image-language dataset will be released upon paper notification.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
heiha12发布了新的文献求助10
4秒前
电王完成签到,获得积分10
6秒前
黄飞完成签到,获得积分10
11秒前
sobergod完成签到,获得积分10
13秒前
14秒前
小蘑菇应助柿饼采纳,获得10
14秒前
啵啵啵小太阳完成签到,获得积分10
15秒前
jhui23z完成签到,获得积分10
15秒前
15秒前
Matthew_G完成签到,获得积分10
16秒前
烟雨平生完成签到,获得积分10
18秒前
leier发布了新的文献求助10
18秒前
Lucas应助pie采纳,获得10
20秒前
乘风破浪完成签到,获得积分10
20秒前
YY发布了新的文献求助10
20秒前
21秒前
23秒前
柴郡喵发布了新的文献求助10
24秒前
虚幻雁荷发布了新的文献求助10
25秒前
wpeng发布了新的文献求助10
26秒前
27秒前
leier完成签到,获得积分10
28秒前
默默的狄小杰完成签到 ,获得积分10
28秒前
35秒前
35秒前
wpeng发布了新的文献求助10
38秒前
39秒前
pie发布了新的文献求助10
40秒前
wws完成签到,获得积分10
41秒前
聪聪发布了新的文献求助10
42秒前
领导范儿应助科研通管家采纳,获得10
43秒前
jyy应助科研通管家采纳,获得10
43秒前
jyy应助科研通管家采纳,获得10
43秒前
43秒前
LY完成签到,获得积分10
43秒前
铁胆鹏鹏完成签到,获得积分10
46秒前
生动千风发布了新的文献求助10
51秒前
李爱国应助有魅力雁蓉采纳,获得10
51秒前
wws发布了新的文献求助50
52秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379815
求助须知:如何正确求助?哪些是违规求助? 2995247
关于积分的说明 8762345
捐赠科研通 2680141
什么是DOI,文献DOI怎么找? 1467827
科研通“疑难数据库(出版商)”最低求助积分说明 678787
邀请新用户注册赠送积分活动 670646