Optimal operation of energy storage system in photovoltaic-storage charging station based on intelligent reinforcement learning

光伏系统 储能 计算机数据存储 强化学习 汽车工程 计算机科学 工程类 工艺工程 功率(物理) 电气工程 人工智能 量子力学 操作系统 物理
作者
Jing Zhang,Lei Hou,Bin Zhang,Xiao Yang,Xiaohong Diao,Linru Jiang,Qian Feng
出处
期刊:Energy and Buildings [Elsevier]
卷期号:299: 113570-113570
标识
DOI:10.1016/j.enbuild.2023.113570
摘要

Optimizing the energy storage charging and discharging strategy is conducive to improving the economy of the integrated operation of photovoltaic-storage charging. The existing model-driven stochastic optimization methods cannot fully consider the complex operating characteristics of the energy storage system and the uncertainty of photovoltaic power generation and electric vehicle charging load characteristics. Therefore, an optimal operation method for the entire life cycle of the energy storage system of the photovoltaic-storage charging station based on intelligent reinforcement learning is proposed. Firstly, the energy storage operation efficiency model and the capacity attenuation model are finely modeled. Then, the energy storage optimization operation strategy based on reinforcement learning was established with the goal of maximizing the revenue of photovoltaic charging stations, taking into account the uncertainty of electric vehicle charging demand, photovoltaic output, and electricity prices to satisfy the charging requirements and photovoltaic consumption of electric vehicles. A dual delay depth deterministic strategy gradient algorithm is used to solve the problem because of the continuity of decision-making actions for energy storage charging and discharging. The model is trained by the actual historical data, and the energy storage charging and discharging strategy is optimized in real time based on the current period status. Finally, the proposed method and model are tested, and the proposed method is compared with the traditional model-driven method. The results verify the effectiveness of the proposed method and model, and the revenue of optical storage charging stations throughout their energy storage life cycle is improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
ma化疼没木完成签到,获得积分10
2秒前
科研通AI6应助MISAKI采纳,获得10
3秒前
3秒前
3秒前
金元宝完成签到,获得积分10
4秒前
edisonzz完成签到,获得积分10
5秒前
李健应助WFLLL采纳,获得10
6秒前
Haibrar完成签到 ,获得积分10
6秒前
6秒前
脱壳金蝉发布了新的文献求助10
7秒前
8秒前
weijiechi完成签到,获得积分10
8秒前
111完成签到 ,获得积分10
9秒前
酷酷的山雁完成签到,获得积分10
9秒前
合适冰棍完成签到 ,获得积分10
9秒前
贤明完成签到,获得积分10
9秒前
和谐诗柳完成签到 ,获得积分10
10秒前
小二郎应助研友_enPJa8采纳,获得10
11秒前
11秒前
zxg发布了新的文献求助10
13秒前
晴雪发布了新的文献求助10
13秒前
书双发布了新的文献求助10
14秒前
夜琉璃应助lunhui6453采纳,获得10
14秒前
stt完成签到 ,获得积分10
15秒前
posh完成签到 ,获得积分10
15秒前
rxyxiaoyu完成签到,获得积分10
16秒前
124完成签到,获得积分10
19秒前
陶醉的钢笔完成签到 ,获得积分0
19秒前
20秒前
蟒玉朝天完成签到 ,获得积分10
20秒前
23秒前
ChemPhys完成签到 ,获得积分10
23秒前
桐桐应助vivian采纳,获得10
23秒前
24秒前
与心爱的你行至世界尽头完成签到,获得积分10
24秒前
hta_chen发布了新的文献求助10
24秒前
零知识完成签到 ,获得积分10
25秒前
干将莫邪发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565327
求助须知:如何正确求助?哪些是违规求助? 4650372
关于积分的说明 14690731
捐赠科研通 4592233
什么是DOI,文献DOI怎么找? 2519519
邀请新用户注册赠送积分活动 1491978
关于科研通互助平台的介绍 1463183