Optimal operation of energy storage system in photovoltaic-storage charging station based on intelligent reinforcement learning

光伏系统 储能 计算机数据存储 强化学习 汽车工程 计算机科学 工程类 工艺工程 功率(物理) 电气工程 人工智能 物理 量子力学 操作系统
作者
Jing Zhang,Lei Hou,Bin Zhang,Xiao Yang,Xiaohong Diao,Linru Jiang,Qian Feng
出处
期刊:Energy and Buildings [Elsevier]
卷期号:299: 113570-113570
标识
DOI:10.1016/j.enbuild.2023.113570
摘要

Optimizing the energy storage charging and discharging strategy is conducive to improving the economy of the integrated operation of photovoltaic-storage charging. The existing model-driven stochastic optimization methods cannot fully consider the complex operating characteristics of the energy storage system and the uncertainty of photovoltaic power generation and electric vehicle charging load characteristics. Therefore, an optimal operation method for the entire life cycle of the energy storage system of the photovoltaic-storage charging station based on intelligent reinforcement learning is proposed. Firstly, the energy storage operation efficiency model and the capacity attenuation model are finely modeled. Then, the energy storage optimization operation strategy based on reinforcement learning was established with the goal of maximizing the revenue of photovoltaic charging stations, taking into account the uncertainty of electric vehicle charging demand, photovoltaic output, and electricity prices to satisfy the charging requirements and photovoltaic consumption of electric vehicles. A dual delay depth deterministic strategy gradient algorithm is used to solve the problem because of the continuity of decision-making actions for energy storage charging and discharging. The model is trained by the actual historical data, and the energy storage charging and discharging strategy is optimized in real time based on the current period status. Finally, the proposed method and model are tested, and the proposed method is compared with the traditional model-driven method. The results verify the effectiveness of the proposed method and model, and the revenue of optical storage charging stations throughout their energy storage life cycle is improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CarryLJR发布了新的文献求助10
刚刚
刚刚
饭饭完成签到,获得积分10
2秒前
黄诗婷发布了新的文献求助10
3秒前
3秒前
传奇3应助Kristal采纳,获得30
3秒前
我爱小juju完成签到,获得积分10
4秒前
4秒前
Eternity2025完成签到 ,获得积分10
4秒前
5秒前
CJY完成签到,获得积分10
5秒前
无极微光发布了新的文献求助20
6秒前
Lucas应助啥时候能否CNS采纳,获得10
6秒前
希望天下0贩的0应助XL神放采纳,获得10
7秒前
科研通AI6应助CarryLJR采纳,获得10
8秒前
无花果应助CarryLJR采纳,获得10
8秒前
华仔应助娇气的火车采纳,获得10
8秒前
过时的糖豆完成签到,获得积分10
8秒前
9秒前
9秒前
摇摇小屋发布了新的文献求助10
9秒前
9秒前
义气的惜霜完成签到 ,获得积分10
10秒前
10秒前
nessa完成签到,获得积分10
10秒前
10秒前
10秒前
0x3f发布了新的文献求助10
11秒前
11秒前
11秒前
小蘑菇应助黄诗婷采纳,获得10
11秒前
糖卜里卜完成签到,获得积分10
12秒前
李晓发布了新的文献求助10
13秒前
13秒前
13秒前
nessa发布了新的文献求助10
14秒前
刘JX发布了新的文献求助10
14秒前
迅速友容完成签到 ,获得积分10
14秒前
Asta发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851