Optimal operation of energy storage system in photovoltaic-storage charging station based on intelligent reinforcement learning

光伏系统 储能 计算机数据存储 强化学习 汽车工程 计算机科学 工程类 工艺工程 功率(物理) 电气工程 人工智能 物理 量子力学 操作系统
作者
Jing Zhang,Lei Hou,Bin Zhang,Xiao Yang,Xiaohong Diao,Linru Jiang,Qian Feng
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:299: 113570-113570
标识
DOI:10.1016/j.enbuild.2023.113570
摘要

Optimizing the energy storage charging and discharging strategy is conducive to improving the economy of the integrated operation of photovoltaic-storage charging. The existing model-driven stochastic optimization methods cannot fully consider the complex operating characteristics of the energy storage system and the uncertainty of photovoltaic power generation and electric vehicle charging load characteristics. Therefore, an optimal operation method for the entire life cycle of the energy storage system of the photovoltaic-storage charging station based on intelligent reinforcement learning is proposed. Firstly, the energy storage operation efficiency model and the capacity attenuation model are finely modeled. Then, the energy storage optimization operation strategy based on reinforcement learning was established with the goal of maximizing the revenue of photovoltaic charging stations, taking into account the uncertainty of electric vehicle charging demand, photovoltaic output, and electricity prices to satisfy the charging requirements and photovoltaic consumption of electric vehicles. A dual delay depth deterministic strategy gradient algorithm is used to solve the problem because of the continuity of decision-making actions for energy storage charging and discharging. The model is trained by the actual historical data, and the energy storage charging and discharging strategy is optimized in real time based on the current period status. Finally, the proposed method and model are tested, and the proposed method is compared with the traditional model-driven method. The results verify the effectiveness of the proposed method and model, and the revenue of optical storage charging stations throughout their energy storage life cycle is improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官靖发布了新的文献求助20
刚刚
刚刚
WangY1263发布了新的文献求助10
1秒前
3秒前
楠易发布了新的文献求助10
3秒前
4秒前
xzy998发布了新的文献求助30
4秒前
azhen发布了新的文献求助10
5秒前
从嘉发布了新的文献求助10
7秒前
熊仔发布了新的文献求助10
7秒前
研友_VZG7GZ应助azhen采纳,获得10
12秒前
小尾巴完成签到 ,获得积分10
13秒前
NexusExplorer应助WANG采纳,获得10
14秒前
14秒前
卷卷发布了新的文献求助10
14秒前
77完成签到 ,获得积分10
14秒前
15秒前
15秒前
清爽的觅夏完成签到,获得积分10
16秒前
李健的小迷弟应助楠易采纳,获得10
17秒前
18秒前
18秒前
19秒前
zy86689492发布了新的文献求助10
19秒前
ljhwahaha完成签到,获得积分20
19秒前
ELENA完成签到,获得积分10
19秒前
20秒前
20秒前
Wang1991发布了新的文献求助10
21秒前
ljhwahaha发布了新的文献求助10
22秒前
foreverchoi发布了新的文献求助10
22秒前
halo发布了新的文献求助10
24秒前
xzy998发布了新的文献求助30
24秒前
小马甲应助foreverchoi采纳,获得10
26秒前
28秒前
xuxu125678完成签到 ,获得积分10
28秒前
wp完成签到,获得积分10
28秒前
31秒前
DrCuiTianjin发布了新的文献求助10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624903
求助须知:如何正确求助?哪些是违规求助? 4024158
关于积分的说明 12456491
捐赠科研通 3708850
什么是DOI,文献DOI怎么找? 2045708
邀请新用户注册赠送积分活动 1077703
科研通“疑难数据库(出版商)”最低求助积分说明 960223