Optimal operation of energy storage system in photovoltaic-storage charging station based on intelligent reinforcement learning

光伏系统 储能 计算机数据存储 强化学习 汽车工程 计算机科学 工程类 工艺工程 功率(物理) 电气工程 人工智能 物理 量子力学 操作系统
作者
Jing Zhang,Lei Hou,Bin Zhang,Xiao Yang,Xiaohong Diao,Linru Jiang,Qian Feng
出处
期刊:Energy and Buildings [Elsevier]
卷期号:299: 113570-113570
标识
DOI:10.1016/j.enbuild.2023.113570
摘要

Optimizing the energy storage charging and discharging strategy is conducive to improving the economy of the integrated operation of photovoltaic-storage charging. The existing model-driven stochastic optimization methods cannot fully consider the complex operating characteristics of the energy storage system and the uncertainty of photovoltaic power generation and electric vehicle charging load characteristics. Therefore, an optimal operation method for the entire life cycle of the energy storage system of the photovoltaic-storage charging station based on intelligent reinforcement learning is proposed. Firstly, the energy storage operation efficiency model and the capacity attenuation model are finely modeled. Then, the energy storage optimization operation strategy based on reinforcement learning was established with the goal of maximizing the revenue of photovoltaic charging stations, taking into account the uncertainty of electric vehicle charging demand, photovoltaic output, and electricity prices to satisfy the charging requirements and photovoltaic consumption of electric vehicles. A dual delay depth deterministic strategy gradient algorithm is used to solve the problem because of the continuity of decision-making actions for energy storage charging and discharging. The model is trained by the actual historical data, and the energy storage charging and discharging strategy is optimized in real time based on the current period status. Finally, the proposed method and model are tested, and the proposed method is compared with the traditional model-driven method. The results verify the effectiveness of the proposed method and model, and the revenue of optical storage charging stations throughout their energy storage life cycle is improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助10
1秒前
大吃一筐馒头完成签到,获得积分10
1秒前
2秒前
悠哈特浓奶糖完成签到,获得积分10
4秒前
英俊的铭应助李会雪采纳,获得10
5秒前
Zephyr发布了新的文献求助10
6秒前
听雨的猫完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
RUIT完成签到,获得积分20
10秒前
11秒前
13秒前
一段段完成签到,获得积分10
14秒前
shaw完成签到,获得积分10
14秒前
YMing发布了新的文献求助10
15秒前
16秒前
16秒前
一颗溏心蛋完成签到,获得积分10
17秒前
深情的雪糕完成签到 ,获得积分10
17秒前
17秒前
lzl完成签到,获得积分10
17秒前
Orange应助陈木木采纳,获得10
19秒前
小羊烧鸡发布了新的文献求助10
19秒前
passion完成签到 ,获得积分20
19秒前
Jia发布了新的文献求助10
19秒前
细心蛋挞完成签到 ,获得积分10
20秒前
周鑫鑫周发布了新的文献求助10
22秒前
23秒前
神勇秋蝶发布了新的文献求助10
23秒前
蜗牛完成签到,获得积分10
26秒前
27秒前
yaoeer发布了新的文献求助10
27秒前
27秒前
Lars汉堡发布了新的文献求助10
27秒前
有本事1234完成签到,获得积分10
27秒前
28秒前
充电宝应助鲁酷采纳,获得10
28秒前
28秒前
28秒前
所所应助刘子豪采纳,获得10
29秒前
淡淡的硬币完成签到 ,获得积分10
29秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620720
求助须知:如何正确求助?哪些是违规求助? 4705277
关于积分的说明 14931056
捐赠科研通 4762648
什么是DOI,文献DOI怎么找? 2551126
邀请新用户注册赠送积分活动 1513769
关于科研通互助平台的介绍 1474655