Optimal operation of energy storage system in photovoltaic-storage charging station based on intelligent reinforcement learning

光伏系统 储能 计算机数据存储 强化学习 汽车工程 计算机科学 工程类 工艺工程 功率(物理) 电气工程 人工智能 物理 量子力学 操作系统
作者
Jing Zhang,Lei Hou,Bin Zhang,Xiao Yang,Xiaohong Diao,Linru Jiang,Qian Feng
出处
期刊:Energy and Buildings [Elsevier]
卷期号:299: 113570-113570
标识
DOI:10.1016/j.enbuild.2023.113570
摘要

Optimizing the energy storage charging and discharging strategy is conducive to improving the economy of the integrated operation of photovoltaic-storage charging. The existing model-driven stochastic optimization methods cannot fully consider the complex operating characteristics of the energy storage system and the uncertainty of photovoltaic power generation and electric vehicle charging load characteristics. Therefore, an optimal operation method for the entire life cycle of the energy storage system of the photovoltaic-storage charging station based on intelligent reinforcement learning is proposed. Firstly, the energy storage operation efficiency model and the capacity attenuation model are finely modeled. Then, the energy storage optimization operation strategy based on reinforcement learning was established with the goal of maximizing the revenue of photovoltaic charging stations, taking into account the uncertainty of electric vehicle charging demand, photovoltaic output, and electricity prices to satisfy the charging requirements and photovoltaic consumption of electric vehicles. A dual delay depth deterministic strategy gradient algorithm is used to solve the problem because of the continuity of decision-making actions for energy storage charging and discharging. The model is trained by the actual historical data, and the energy storage charging and discharging strategy is optimized in real time based on the current period status. Finally, the proposed method and model are tested, and the proposed method is compared with the traditional model-driven method. The results verify the effectiveness of the proposed method and model, and the revenue of optical storage charging stations throughout their energy storage life cycle is improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_8RyzBZ发布了新的文献求助10
1秒前
1秒前
Stella应助Liens采纳,获得10
2秒前
2秒前
赘婿应助时尚的雨筠采纳,获得10
2秒前
arizaki7发布了新的文献求助10
2秒前
will发布了新的文献求助10
2秒前
Ricky发布了新的文献求助10
3秒前
3秒前
陈0702_完成签到,获得积分20
3秒前
ZIS发布了新的文献求助10
3秒前
果粒橙发布了新的文献求助10
3秒前
lee发布了新的文献求助10
4秒前
buno应助无悔初心采纳,获得10
5秒前
227发布了新的文献求助10
7秒前
金金发布了新的文献求助10
7秒前
bkagyin应助香香的臭宝采纳,获得10
7秒前
7秒前
7秒前
岛屿发布了新的文献求助10
8秒前
细腻梦凡完成签到,获得积分10
8秒前
8秒前
虚拟的含灵完成签到,获得积分10
9秒前
Te关注了科研通微信公众号
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
ww发布了新的文献求助10
10秒前
魁梧的盼雁完成签到,获得积分10
10秒前
陈0702_发布了新的文献求助20
10秒前
11秒前
香蕉觅云应助君尧采纳,获得10
11秒前
llly完成签到,获得积分10
11秒前
Kaka发布了新的文献求助10
12秒前
12秒前
Ricky完成签到,获得积分10
12秒前
奋斗幻姬完成签到,获得积分20
12秒前
小菜发布了新的文献求助30
12秒前
李茉琳发布了新的文献求助10
12秒前
ceeray23应助俊逸的问薇采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836