Optimal operation of energy storage system in photovoltaic-storage charging station based on intelligent reinforcement learning

光伏系统 储能 计算机数据存储 强化学习 汽车工程 计算机科学 工程类 工艺工程 功率(物理) 电气工程 人工智能 量子力学 操作系统 物理
作者
Jing Zhang,Lei Hou,Bin Zhang,Xiao Yang,Xiaohong Diao,Linru Jiang,Qian Feng
出处
期刊:Energy and Buildings [Elsevier]
卷期号:299: 113570-113570
标识
DOI:10.1016/j.enbuild.2023.113570
摘要

Optimizing the energy storage charging and discharging strategy is conducive to improving the economy of the integrated operation of photovoltaic-storage charging. The existing model-driven stochastic optimization methods cannot fully consider the complex operating characteristics of the energy storage system and the uncertainty of photovoltaic power generation and electric vehicle charging load characteristics. Therefore, an optimal operation method for the entire life cycle of the energy storage system of the photovoltaic-storage charging station based on intelligent reinforcement learning is proposed. Firstly, the energy storage operation efficiency model and the capacity attenuation model are finely modeled. Then, the energy storage optimization operation strategy based on reinforcement learning was established with the goal of maximizing the revenue of photovoltaic charging stations, taking into account the uncertainty of electric vehicle charging demand, photovoltaic output, and electricity prices to satisfy the charging requirements and photovoltaic consumption of electric vehicles. A dual delay depth deterministic strategy gradient algorithm is used to solve the problem because of the continuity of decision-making actions for energy storage charging and discharging. The model is trained by the actual historical data, and the energy storage charging and discharging strategy is optimized in real time based on the current period status. Finally, the proposed method and model are tested, and the proposed method is compared with the traditional model-driven method. The results verify the effectiveness of the proposed method and model, and the revenue of optical storage charging stations throughout their energy storage life cycle is improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵李奕安完成签到,获得积分10
1秒前
超帅连虎完成签到,获得积分10
1秒前
Edgar_Zomboss完成签到,获得积分10
1秒前
LSQ发布了新的文献求助10
2秒前
香蕉觅云应助好运采纳,获得10
2秒前
2秒前
热情的板栗完成签到,获得积分10
3秒前
Hello应助晴天采纳,获得10
4秒前
聪明紊完成签到 ,获得积分10
4秒前
杜科研完成签到,获得积分10
5秒前
可爱的小丸子完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
7秒前
7秒前
巴萨老板完成签到,获得积分20
8秒前
今后应助风中刺猬采纳,获得10
8秒前
8秒前
Gtty完成签到,获得积分10
10秒前
11秒前
11秒前
zsc发布了新的文献求助10
11秒前
研友_n0QYAZ发布了新的文献求助10
11秒前
安静含之发布了新的文献求助10
11秒前
hyuuu完成签到,获得积分20
12秒前
XG发布了新的文献求助10
12秒前
xiaohongmao发布了新的文献求助10
13秒前
yiyiyi发布了新的文献求助10
14秒前
14秒前
且歌且行发布了新的文献求助20
15秒前
好运发布了新的文献求助10
15秒前
生查子完成签到 ,获得积分10
15秒前
retortt完成签到,获得积分10
16秒前
17秒前
爱吃火锅的酸菜鱼关注了科研通微信公众号
18秒前
张蓓瑶发布了新的文献求助10
18秒前
风中刺猬发布了新的文献求助10
19秒前
热心市民范女士完成签到,获得积分10
21秒前
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232940
求助须知:如何正确求助?哪些是违规求助? 2879558
关于积分的说明 8212027
捐赠科研通 2547095
什么是DOI,文献DOI怎么找? 1376547
科研通“疑难数据库(出版商)”最低求助积分说明 647658
邀请新用户注册赠送积分活动 623056