Optimal operation of energy storage system in photovoltaic-storage charging station based on intelligent reinforcement learning

光伏系统 储能 计算机数据存储 强化学习 汽车工程 计算机科学 工程类 工艺工程 功率(物理) 电气工程 人工智能 物理 量子力学 操作系统
作者
Jing Zhang,Lei Hou,Bin Zhang,Xiao Yang,Xiaohong Diao,Linru Jiang,Qian Feng
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:299: 113570-113570
标识
DOI:10.1016/j.enbuild.2023.113570
摘要

Optimizing the energy storage charging and discharging strategy is conducive to improving the economy of the integrated operation of photovoltaic-storage charging. The existing model-driven stochastic optimization methods cannot fully consider the complex operating characteristics of the energy storage system and the uncertainty of photovoltaic power generation and electric vehicle charging load characteristics. Therefore, an optimal operation method for the entire life cycle of the energy storage system of the photovoltaic-storage charging station based on intelligent reinforcement learning is proposed. Firstly, the energy storage operation efficiency model and the capacity attenuation model are finely modeled. Then, the energy storage optimization operation strategy based on reinforcement learning was established with the goal of maximizing the revenue of photovoltaic charging stations, taking into account the uncertainty of electric vehicle charging demand, photovoltaic output, and electricity prices to satisfy the charging requirements and photovoltaic consumption of electric vehicles. A dual delay depth deterministic strategy gradient algorithm is used to solve the problem because of the continuity of decision-making actions for energy storage charging and discharging. The model is trained by the actual historical data, and the energy storage charging and discharging strategy is optimized in real time based on the current period status. Finally, the proposed method and model are tested, and the proposed method is compared with the traditional model-driven method. The results verify the effectiveness of the proposed method and model, and the revenue of optical storage charging stations throughout their energy storage life cycle is improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适的丸子完成签到,获得积分10
刚刚
1秒前
xlarrow发布了新的文献求助10
1秒前
Ryan发布了新的文献求助50
2秒前
6秒前
丰富发布了新的文献求助10
7秒前
Aman完成签到,获得积分10
10秒前
10秒前
10秒前
seven发布了新的文献求助10
10秒前
四硼酸钠完成签到,获得积分10
11秒前
小坏蛋蛋蛋蛋完成签到,获得积分20
12秒前
酷波er应助悲凉的雁风采纳,获得10
12秒前
丰富完成签到,获得积分10
12秒前
淡定从凝发布了新的文献求助10
14秒前
康嘉伟发布了新的文献求助10
14秒前
蜗牛弄墨完成签到,获得积分20
15秒前
zho应助一三二五七采纳,获得20
16秒前
kk应助26岁顶级保安采纳,获得10
17秒前
17秒前
17秒前
康嘉伟完成签到,获得积分10
20秒前
长亭外完成签到,获得积分10
20秒前
陌影完成签到,获得积分10
20秒前
旷野发布了新的文献求助10
21秒前
共享精神应助seven采纳,获得10
21秒前
刻苦慕晴完成签到 ,获得积分10
22秒前
THEEVE完成签到,获得积分10
23秒前
23秒前
123完成签到,获得积分10
24秒前
李健应助雪花采纳,获得30
25秒前
kk应助26岁顶级保安采纳,获得10
25秒前
许安发布了新的文献求助10
27秒前
conman发布了新的文献求助20
28秒前
29秒前
chris发布了新的文献求助10
34秒前
fengdengjin完成签到,获得积分20
36秒前
思源应助Qwe采纳,获得10
38秒前
39秒前
zho应助一三二五七采纳,获得20
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994039
求助须知:如何正确求助?哪些是违规求助? 3534593
关于积分的说明 11266046
捐赠科研通 3274516
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883238
科研通“疑难数据库(出版商)”最低求助积分说明 809719