Physics-informed deep learning for traffic state estimation based on the traffic flow model and computational graph method

计算机科学 图形 过程(计算) 深度学习 数据挖掘 流量(计算机网络) 数据收集 人工智能 算法 机器学习 理论计算机科学 数学 统计 计算机安全 操作系统
作者
Jinlei Zhang,Shuai Mao,Lixing Yang,Wei Ma,Shukai Li,Ziyou Gao
出处
期刊:Information Fusion [Elsevier]
卷期号:101: 101971-101971 被引量:26
标识
DOI:10.1016/j.inffus.2023.101971
摘要

Traffic state estimation (TSE) is a critical task for intelligent transportation systems. However, it is extremely challenging because the traffic data quality is often affected by the installation position of devices, data collection frequency, interference during the transmission process, etc, thus causing the problem of data sparsity or data missing. To address the issue of traffic state estimation under the scenario of data sparsity, we propose a TSE model that combines the computational graph with physics-informed deep learning (PIDL) methods. Firstly, we apply the computational graph method to determine the parameters of the traffic fundamental diagram. These parameters are embedded into the computational graph framework, and their values are determined through the forward propagation of variables and the backward propagation of errors. Next, we employ the PIDL method to realize TSE (taking the LWR model based on the Greenshields fundamental diagram as an example). The PIDL leverages the advantages of data-driven and model-driven approaches to achieve accurate traffic state estimation. Case studies are conducted using the NGSIM dataset under two sparse data scenarios: loop detectors and probe vehicles. Experimental results demonstrate that PIDL can accurately reconstruct the traffic state of the entire road segment based on partially observed data. Furthermore, compared to pure deep learning methods and other baseline models, PIDL performs better in situations with sparse data, thereby proving the feasibility of integrating domain knowledge with deep learning frameworks. This paper fully acknowledges the issue of data sparsity in TSE and effectively addresses it by applying the PIDL method to achieve precise TSE, which holds significant implications for the control and management of real traffic flow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ivyjianjie发布了新的文献求助10
刚刚
1秒前
清脆问儿发布了新的文献求助10
1秒前
dahafei完成签到,获得积分10
1秒前
3秒前
知更鸟完成签到,获得积分10
5秒前
pluto应助一蓑烟雨任平生采纳,获得50
5秒前
7秒前
8秒前
田洋洋完成签到,获得积分20
9秒前
kekekelili发布了新的文献求助20
11秒前
KGYM完成签到,获得积分10
12秒前
科研通AI2S应助哈哈哈哈st采纳,获得10
13秒前
彭于晏应助田洋洋采纳,获得10
13秒前
Owen应助Vancy采纳,获得10
14秒前
14秒前
keke发布了新的文献求助40
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
15秒前
无花果应助科研通管家采纳,获得10
15秒前
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
16秒前
Singularity应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
Shelena完成签到,获得积分10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
科研通AI2S应助哈哈哈哈st采纳,获得10
18秒前
18秒前
wang发布了新的文献求助10
20秒前
勤劳桐完成签到 ,获得积分10
21秒前
21秒前
昏睡的亦竹完成签到,获得积分10
23秒前
陈俞完成签到,获得积分10
27秒前
烟花应助wang采纳,获得10
28秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416546
求助须知:如何正确求助?哪些是违规求助? 3018380
关于积分的说明 8884060
捐赠科研通 2705746
什么是DOI,文献DOI怎么找? 1483862
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 680985