A LSTM-assisted GNSS/INS integration system using IMU recomputed error information for train localization

全球导航卫星系统应用 惯性测量装置 计算机科学 全球导航卫星系统增强 传感器融合 实时计算 全球定位系统 遥感 人工智能 地理 电信
作者
Yidi Chen,Wei Jiang,Jian Wang,Baigen Cai,Dan Liŭ,Xiaohui Ba,Yang Yang
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/taes.2023.3328318
摘要

GNSS/INS integration is widely used for train positioning, but railways tunnels and mountains can interfere GNSS signals and will lead to performance degradation when the system is operated in the standalone INS mode. This paper proposes a Long Short Term Memory (LSTM)-assisted GNSS/INS integration system using recomputed Inertial Measurement Unit (IMU) error, to suppress the error divergence of an INS in the case of GNSS solution non-availability. The IMU error recomputation method is firstly proposed, where the GNSS/INS-derived position, velocity and attitude (PVA) information is utilized when is GNSS available. The train's attitude computed using the GNSS dual-antenna moving baseline method is used as the heading constraint for GNSS/INS integration so as to provide accurate attitude information. The recomputed IMU sensor error is then used for model training, and the system switches to LSTM-assisted INS mode when GNSS solutions are unavailable. The system predicts the IMU sensor error using the train motion state, and corrects the IMU measurements to suppress the accumulating IMU sensor error.The proposed system was evaluated through a train experiment on the Shuozhou-Huanghua railway. The IMU error Recomputation Method (IMU-RM) was evaluated on four time slots of varying lengths, and the proposed LSTM-assisted GNSS/INS integration system using IMU-RM was evaluated in two “difficult” GNSS signal areas, of curved and straight railtrack segments, were simulated. Results showed significant improvement in horizontal position accuracy compared to conventional methods, with suppression of INS sensor error divergence by 79% and 63% for curved and straight segments, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默的忆霜完成签到 ,获得积分10
6秒前
8秒前
12秒前
风光无限完成签到 ,获得积分20
16秒前
庄海棠完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
沐风完成签到 ,获得积分10
35秒前
含糊的茹妖完成签到 ,获得积分0
38秒前
43秒前
huangqian完成签到,获得积分10
48秒前
沧海一粟完成签到 ,获得积分10
51秒前
进击的巨人完成签到 ,获得积分10
53秒前
56秒前
牛马完成签到,获得积分10
57秒前
58秒前
我不是奶黄包完成签到,获得积分10
1分钟前
Gavin完成签到,获得积分10
1分钟前
cq_2完成签到,获得积分10
1分钟前
花生完成签到 ,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
Tianling完成签到,获得积分0
1分钟前
Rn完成签到 ,获得积分10
1分钟前
吉祥高趙完成签到 ,获得积分10
1分钟前
嘉人完成签到 ,获得积分10
1分钟前
可千万不要躺平呀应助yar采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Lucas应助尊敬代亦采纳,获得10
1分钟前
yinshan完成签到 ,获得积分10
1分钟前
1分钟前
yar重新开启了小飞文献应助
1分钟前
1分钟前
幸福的杨小夕完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
zozox完成签到 ,获得积分10
1分钟前
Tina完成签到 ,获得积分10
1分钟前
bckl888完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022