A LSTM-assisted GNSS/INS integration system using IMU recomputed error information for train localization

全球导航卫星系统应用 惯性测量装置 计算机科学 全球导航卫星系统增强 传感器融合 实时计算 全球定位系统 遥感 人工智能 地理 电信
作者
Yidi Chen,Wei Jiang,Jian Wang,Baigen Cai,Dan Liŭ,Xiaohui Ba,Yang Yang
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/taes.2023.3328318
摘要

GNSS/INS integration is widely used for train positioning, but railways tunnels and mountains can interfere GNSS signals and will lead to performance degradation when the system is operated in the standalone INS mode. This paper proposes a Long Short Term Memory (LSTM)-assisted GNSS/INS integration system using recomputed Inertial Measurement Unit (IMU) error, to suppress the error divergence of an INS in the case of GNSS solution non-availability. The IMU error recomputation method is firstly proposed, where the GNSS/INS-derived position, velocity and attitude (PVA) information is utilized when is GNSS available. The train's attitude computed using the GNSS dual-antenna moving baseline method is used as the heading constraint for GNSS/INS integration so as to provide accurate attitude information. The recomputed IMU sensor error is then used for model training, and the system switches to LSTM-assisted INS mode when GNSS solutions are unavailable. The system predicts the IMU sensor error using the train motion state, and corrects the IMU measurements to suppress the accumulating IMU sensor error.The proposed system was evaluated through a train experiment on the Shuozhou-Huanghua railway. The IMU error Recomputation Method (IMU-RM) was evaluated on four time slots of varying lengths, and the proposed LSTM-assisted GNSS/INS integration system using IMU-RM was evaluated in two “difficult” GNSS signal areas, of curved and straight railtrack segments, were simulated. Results showed significant improvement in horizontal position accuracy compared to conventional methods, with suppression of INS sensor error divergence by 79% and 63% for curved and straight segments, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助曾经忘幽采纳,获得10
1秒前
小飞侠来咯完成签到,获得积分10
1秒前
香蕉觅云应助Atom采纳,获得10
1秒前
shenkedesikao发布了新的文献求助10
2秒前
2秒前
zqx发布了新的文献求助10
2秒前
Lucas应助肯瑞恩哭哭采纳,获得10
3秒前
3秒前
小晓完成签到,获得积分10
3秒前
Dky_安静的初夏完成签到,获得积分10
3秒前
4秒前
Sandy完成签到,获得积分10
4秒前
bkagyin应助chang采纳,获得10
4秒前
5秒前
ghroth完成签到,获得积分10
5秒前
朴实灵竹完成签到,获得积分10
5秒前
彭于晏应助深呼吸采纳,获得10
5秒前
6秒前
洁净雨柏完成签到,获得积分10
7秒前
8秒前
8秒前
King完成签到,获得积分10
8秒前
怡然枫叶发布了新的文献求助10
9秒前
9秒前
失眠朋友完成签到,获得积分10
9秒前
鄂雪娇完成签到,获得积分20
10秒前
田様应助欢喜念双采纳,获得10
10秒前
刻苦大门发布了新的文献求助10
10秒前
11秒前
港港完成签到 ,获得积分10
11秒前
11秒前
范东辉完成签到,获得积分10
11秒前
11秒前
12秒前
苹果山柳完成签到,获得积分10
12秒前
yull发布了新的文献求助10
13秒前
张雨完成签到,获得积分10
13秒前
13秒前
糖豆完成签到,获得积分10
14秒前
嗯哼发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974358
求助须知:如何正确求助?哪些是违规求助? 3518706
关于积分的说明 11195521
捐赠科研通 3254897
什么是DOI,文献DOI怎么找? 1797614
邀请新用户注册赠送积分活动 877011
科研通“疑难数据库(出版商)”最低求助积分说明 806128