亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-Frequency Core Loss Modeling Based on Knowledge-Aware Artificial Neural Network

计算机科学 人工神经网络 反向传播 特征(语言学) 人工智能 电子工程 工程类 哲学 语言学
作者
Junyun Deng,Wenbo Wang,Zhansheng Ning,P. Venugopal,Jelena Popović,Gert Rietveld
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 1968-1973 被引量:4
标识
DOI:10.1109/tpel.2023.3332025
摘要

High-frequency core loss modeling plays a critical role in the magnetics design of power electronics. However, existing modeling tools fail to achieve both high speed and high precision. The conventional analytical approach enables fast estimations but performs poorly in accuracy. Magnetic loss models aided by loss maps feature high accuracy, but their model parameterization relies on large data. The emerging approach of artificial neural networks (ANNs) provides a promising alternative since it can achieve high speed and accuracy. However, conventional implementations of ANN require a large and accurate dataset for training, which is hard to achieve in magnetic loss modeling. To solve this problem, a knowledge-aware artificial neural network (KANN) is proposed that can achieve high accuracy with small training datasets. After introducing the principle of the proposed KANN, it is applied to high-frequency core loss modeling using the improved generalized Steinmetz equation as additional knowledge. To validate the performance of the proposed KANN-based design method for core loss modeling, it is applied to predict the losses of two ferrite cores in the frequency range of 50–450 kHz. The results show that the proposed method greatly outperforms present loss modeling approaches in accuracy and speed, requiring only a limited training dataset. An automatic loss modeling tool based on the new method is provided together with its open-source code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
enchanted完成签到,获得积分10
4秒前
kouxinyao完成签到 ,获得积分10
4秒前
RR发布了新的文献求助10
4秒前
enchanted发布了新的文献求助10
6秒前
汝桢发布了新的文献求助10
7秒前
7秒前
10秒前
13秒前
机灵的衬衫完成签到 ,获得积分10
14秒前
左诗发布了新的文献求助10
14秒前
糟糕的颜完成签到 ,获得积分10
15秒前
16秒前
17秒前
algain完成签到 ,获得积分10
20秒前
酷波er应助肯瑞恩哭哭采纳,获得30
21秒前
胡萝卜发布了新的文献求助10
21秒前
朱孟研发布了新的文献求助10
23秒前
26秒前
34秒前
ddddddd完成签到 ,获得积分10
39秒前
40秒前
科目三应助如意小丸子采纳,获得10
40秒前
40秒前
42秒前
43秒前
一投就中发布了新的文献求助10
44秒前
ax发布了新的文献求助10
44秒前
45秒前
46秒前
默己完成签到 ,获得积分10
47秒前
左诗完成签到,获得积分10
47秒前
YangZhang发布了新的文献求助10
49秒前
51秒前
51秒前
善学以致用应助一投就中采纳,获得10
53秒前
53秒前
隐形曼青应助wyx_weirdo采纳,获得30
55秒前
阿龙发布了新的文献求助10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253441
求助须知:如何正确求助?哪些是违规求助? 4416791
关于积分的说明 13750469
捐赠科研通 4289194
什么是DOI,文献DOI怎么找? 2353310
邀请新用户注册赠送积分活动 1350007
关于科研通互助平台的介绍 1309854