High-Frequency Core Loss Modeling Based on Knowledge-Aware Artificial Neural Network

计算机科学 人工神经网络 反向传播 特征(语言学) 人工智能 电子工程 工程类 语言学 哲学
作者
Junyun Deng,Wenbo Wang,Zhansheng Ning,P. Venugopal,Jelena Popović,Gert Rietveld
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 1968-1973 被引量:4
标识
DOI:10.1109/tpel.2023.3332025
摘要

High-frequency core loss modeling plays a critical role in the magnetics design of power electronics. However, existing modeling tools fail to achieve both high speed and high precision. The conventional analytical approach enables fast estimations but performs poorly in accuracy. Magnetic loss models aided by loss maps feature high accuracy, but their model parameterization relies on large data. The emerging approach of artificial neural networks (ANNs) provides a promising alternative since it can achieve high speed and accuracy. However, conventional implementations of ANN require a large and accurate dataset for training, which is hard to achieve in magnetic loss modeling. To solve this problem, a knowledge-aware artificial neural network (KANN) is proposed that can achieve high accuracy with small training datasets. After introducing the principle of the proposed KANN, it is applied to high-frequency core loss modeling using the improved generalized Steinmetz equation as additional knowledge. To validate the performance of the proposed KANN-based design method for core loss modeling, it is applied to predict the losses of two ferrite cores in the frequency range of 50–450 kHz. The results show that the proposed method greatly outperforms present loss modeling approaches in accuracy and speed, requiring only a limited training dataset. An automatic loss modeling tool based on the new method is provided together with its open-source code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
卡卡西发布了新的文献求助10
刚刚
刚刚
长风与海浪完成签到 ,获得积分10
1秒前
MAOJCFK发布了新的文献求助10
2秒前
2秒前
faiting完成签到,获得积分10
2秒前
勤奋的天亦完成签到,获得积分10
2秒前
kiyo_v完成签到,获得积分10
2秒前
邓代容发布了新的文献求助10
3秒前
无私的芹应助yuelsy0117采纳,获得10
3秒前
ZHYChen完成签到,获得积分10
3秒前
huk发布了新的文献求助10
3秒前
ZJJ静完成签到,获得积分10
4秒前
董竹君完成签到,获得积分10
4秒前
俭朴的天曼完成签到,获得积分10
4秒前
Lucas应助顺心的翠丝采纳,获得10
5秒前
李田田完成签到,获得积分20
5秒前
5秒前
义气乐儿发布了新的文献求助10
5秒前
宅心仁厚完成签到 ,获得积分10
6秒前
6秒前
骑猪看日落完成签到,获得积分10
6秒前
冥冥之极为昭昭完成签到,获得积分10
6秒前
繁荣的又夏完成签到,获得积分10
7秒前
7秒前
嗝嗝完成签到,获得积分10
7秒前
8秒前
Windsyang完成签到,获得积分10
8秒前
cs完成签到,获得积分10
9秒前
wanci应助小蜜蜂采纳,获得10
9秒前
拉瓦锡不爱化学完成签到,获得积分10
10秒前
三笠完成签到,获得积分10
11秒前
cmuwinni完成签到,获得积分10
11秒前
爆米花应助ddffgz采纳,获得30
12秒前
在水一方应助YY采纳,获得10
12秒前
实验耗材发布了新的文献求助10
12秒前
孤独听雨的猫完成签到 ,获得积分10
12秒前
Andy.发布了新的文献求助10
12秒前
李大侠完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027