High-Frequency Core Loss Modeling Based on Knowledge-Aware Artificial Neural Network

计算机科学 人工神经网络 反向传播 特征(语言学) 人工智能 电子工程 工程类 哲学 语言学
作者
Junyun Deng,Wenbo Wang,Zhansheng Ning,P. Venugopal,Jelena Popović,Gert Rietveld
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 1968-1973 被引量:4
标识
DOI:10.1109/tpel.2023.3332025
摘要

High-frequency core loss modeling plays a critical role in the magnetics design of power electronics. However, existing modeling tools fail to achieve both high speed and high precision. The conventional analytical approach enables fast estimations but performs poorly in accuracy. Magnetic loss models aided by loss maps feature high accuracy, but their model parameterization relies on large data. The emerging approach of artificial neural networks (ANNs) provides a promising alternative since it can achieve high speed and accuracy. However, conventional implementations of ANN require a large and accurate dataset for training, which is hard to achieve in magnetic loss modeling. To solve this problem, a knowledge-aware artificial neural network (KANN) is proposed that can achieve high accuracy with small training datasets. After introducing the principle of the proposed KANN, it is applied to high-frequency core loss modeling using the improved generalized Steinmetz equation as additional knowledge. To validate the performance of the proposed KANN-based design method for core loss modeling, it is applied to predict the losses of two ferrite cores in the frequency range of 50–450 kHz. The results show that the proposed method greatly outperforms present loss modeling approaches in accuracy and speed, requiring only a limited training dataset. An automatic loss modeling tool based on the new method is provided together with its open-source code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
烤肠发布了新的文献求助10
1秒前
tobino1发布了新的文献求助10
1秒前
2秒前
2秒前
zzzdx发布了新的文献求助10
2秒前
trophozoite发布了新的文献求助10
3秒前
情怀应助烤肠采纳,获得10
6秒前
ZZK发布了新的文献求助10
6秒前
Tina发布了新的文献求助10
7秒前
mwiyi完成签到,获得积分10
7秒前
7秒前
慧慧发布了新的文献求助10
7秒前
7秒前
Kingzd完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
tly完成签到,获得积分10
11秒前
魔王小豆包完成签到,获得积分10
12秒前
12秒前
13秒前
舒心的紫雪完成签到 ,获得积分10
14秒前
16秒前
一粒苹果酒完成签到,获得积分10
16秒前
17秒前
阿西吧完成签到,获得积分10
18秒前
19秒前
19秒前
小乐发布了新的文献求助10
19秒前
19秒前
傅剑寒发布了新的文献求助30
19秒前
瓜6发布了新的文献求助10
20秒前
十是十发布了新的文献求助10
20秒前
科研通AI6应助山逍采纳,获得10
20秒前
Tom完成签到 ,获得积分10
21秒前
21秒前
傲娇芷容完成签到,获得积分20
23秒前
林新杰发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354788
求助须知:如何正确求助?哪些是违规求助? 4486810
关于积分的说明 13967969
捐赠科研通 4387444
什么是DOI,文献DOI怎么找? 2410377
邀请新用户注册赠送积分活动 1402786
关于科研通互助平台的介绍 1376566