High-Frequency Core Loss Modeling Based on Knowledge-Aware Artificial Neural Network

计算机科学 人工神经网络 反向传播 特征(语言学) 人工智能 电子工程 工程类 哲学 语言学
作者
Junyun Deng,Wenbo Wang,Zhansheng Ning,P. Venugopal,Jelena Popović,Gert Rietveld
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 1968-1973 被引量:4
标识
DOI:10.1109/tpel.2023.3332025
摘要

High-frequency core loss modeling plays a critical role in the magnetics design of power electronics. However, existing modeling tools fail to achieve both high speed and high precision. The conventional analytical approach enables fast estimations but performs poorly in accuracy. Magnetic loss models aided by loss maps feature high accuracy, but their model parameterization relies on large data. The emerging approach of artificial neural networks (ANNs) provides a promising alternative since it can achieve high speed and accuracy. However, conventional implementations of ANN require a large and accurate dataset for training, which is hard to achieve in magnetic loss modeling. To solve this problem, a knowledge-aware artificial neural network (KANN) is proposed that can achieve high accuracy with small training datasets. After introducing the principle of the proposed KANN, it is applied to high-frequency core loss modeling using the improved generalized Steinmetz equation as additional knowledge. To validate the performance of the proposed KANN-based design method for core loss modeling, it is applied to predict the losses of two ferrite cores in the frequency range of 50–450 kHz. The results show that the proposed method greatly outperforms present loss modeling approaches in accuracy and speed, requiring only a limited training dataset. An automatic loss modeling tool based on the new method is provided together with its open-source code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
vothuong完成签到,获得积分10
刚刚
My发布了新的文献求助10
1秒前
定西完成签到,获得积分10
1秒前
1秒前
xuyang完成签到,获得积分10
1秒前
1秒前
Rufina0720发布了新的文献求助10
1秒前
ava完成签到,获得积分10
2秒前
朴素的向雁完成签到,获得积分10
2秒前
2秒前
大模型应助鱼鱼子999采纳,获得10
3秒前
lbc发布了新的文献求助10
3秒前
开放念云发布了新的文献求助10
3秒前
稳重诗珊发布了新的文献求助10
3秒前
teng123完成签到 ,获得积分10
4秒前
璐璐完成签到,获得积分10
4秒前
zhang发布了新的文献求助10
4秒前
gggggggbao发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
6秒前
7秒前
现代宝宝完成签到,获得积分10
7秒前
璐璐发布了新的文献求助10
8秒前
8秒前
chongziccc完成签到 ,获得积分10
8秒前
阳光刺眼发布了新的文献求助10
8秒前
白月当归完成签到,获得积分10
9秒前
9秒前
ly完成签到,获得积分10
9秒前
调皮的萃完成签到,获得积分10
9秒前
dracovu完成签到,获得积分10
9秒前
感动城发布了新的文献求助10
9秒前
科研通AI6应助i7采纳,获得10
10秒前
无花果应助dudu采纳,获得30
11秒前
火星上秋尽完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262