High-Frequency Core Loss Modeling Based on Knowledge-Aware Artificial Neural Network

计算机科学 人工神经网络 反向传播 特征(语言学) 人工智能 电子工程 工程类 语言学 哲学
作者
Junyun Deng,Wenbo Wang,Zhansheng Ning,P. Venugopal,Jelena Popović,Gert Rietveld
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 1968-1973 被引量:4
标识
DOI:10.1109/tpel.2023.3332025
摘要

High-frequency core loss modeling plays a critical role in the magnetics design of power electronics. However, existing modeling tools fail to achieve both high speed and high precision. The conventional analytical approach enables fast estimations but performs poorly in accuracy. Magnetic loss models aided by loss maps feature high accuracy, but their model parameterization relies on large data. The emerging approach of artificial neural networks (ANNs) provides a promising alternative since it can achieve high speed and accuracy. However, conventional implementations of ANN require a large and accurate dataset for training, which is hard to achieve in magnetic loss modeling. To solve this problem, a knowledge-aware artificial neural network (KANN) is proposed that can achieve high accuracy with small training datasets. After introducing the principle of the proposed KANN, it is applied to high-frequency core loss modeling using the improved generalized Steinmetz equation as additional knowledge. To validate the performance of the proposed KANN-based design method for core loss modeling, it is applied to predict the losses of two ferrite cores in the frequency range of 50–450 kHz. The results show that the proposed method greatly outperforms present loss modeling approaches in accuracy and speed, requiring only a limited training dataset. An automatic loss modeling tool based on the new method is provided together with its open-source code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今夜不设防完成签到,获得积分10
1秒前
李健应助木子采纳,获得10
2秒前
爆米花发布了新的文献求助10
2秒前
2秒前
2秒前
可靠的老鼠完成签到,获得积分10
3秒前
落寞依珊应助master-f采纳,获得10
3秒前
wbh发布了新的文献求助10
4秒前
田様应助hu970采纳,获得10
4秒前
科研通AI2S应助钟是一梦采纳,获得10
4秒前
zzz完成签到,获得积分20
5秒前
好玩和有趣完成签到,获得积分10
5秒前
脂蛋白抗原完成签到,获得积分10
5秒前
5秒前
5秒前
虫虫完成签到,获得积分10
5秒前
6秒前
6秒前
喜悦的向珊完成签到,获得积分10
6秒前
6秒前
科研狗发布了新的文献求助10
6秒前
清爽绿凝发布了新的文献求助10
6秒前
6秒前
大个应助佰斯特威采纳,获得10
7秒前
JingP完成签到,获得积分10
8秒前
赘婿应助yuyu采纳,获得10
8秒前
蔡翌文完成签到 ,获得积分10
8秒前
crescendo完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
plumcute完成签到,获得积分10
9秒前
cybbbbbb发布了新的文献求助10
10秒前
名丿完成签到,获得积分10
10秒前
10秒前
网上飞完成签到,获得积分10
10秒前
小香草发布了新的文献求助10
10秒前
xiaoziyi666发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740