High-Frequency Core Loss Modeling Based on Knowledge-Aware Artificial Neural Network

计算机科学 人工神经网络 反向传播 特征(语言学) 人工智能 电子工程 工程类 哲学 语言学
作者
Junyun Deng,Wenbo Wang,Zhansheng Ning,P. Venugopal,Jelena Popović,Gert Rietveld
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 1968-1973 被引量:4
标识
DOI:10.1109/tpel.2023.3332025
摘要

High-frequency core loss modeling plays a critical role in the magnetics design of power electronics. However, existing modeling tools fail to achieve both high speed and high precision. The conventional analytical approach enables fast estimations but performs poorly in accuracy. Magnetic loss models aided by loss maps feature high accuracy, but their model parameterization relies on large data. The emerging approach of artificial neural networks (ANNs) provides a promising alternative since it can achieve high speed and accuracy. However, conventional implementations of ANN require a large and accurate dataset for training, which is hard to achieve in magnetic loss modeling. To solve this problem, a knowledge-aware artificial neural network (KANN) is proposed that can achieve high accuracy with small training datasets. After introducing the principle of the proposed KANN, it is applied to high-frequency core loss modeling using the improved generalized Steinmetz equation as additional knowledge. To validate the performance of the proposed KANN-based design method for core loss modeling, it is applied to predict the losses of two ferrite cores in the frequency range of 50–450 kHz. The results show that the proposed method greatly outperforms present loss modeling approaches in accuracy and speed, requiring only a limited training dataset. An automatic loss modeling tool based on the new method is provided together with its open-source code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
老夏完成签到,获得积分10
1秒前
1秒前
受伤的台灯完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
Ted发布了新的文献求助10
4秒前
6秒前
NexusExplorer应助年华采纳,获得10
6秒前
6秒前
7秒前
一刻钟发布了新的文献求助10
7秒前
共享精神应助CCCC采纳,获得10
7秒前
7秒前
Frankwei发布了新的文献求助10
8秒前
wanci应助alan采纳,获得10
8秒前
Summer发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助20
9秒前
菜了发布了新的文献求助10
10秒前
lllll完成签到,获得积分10
10秒前
可爱的函函应助高兴梦竹采纳,获得10
12秒前
12秒前
蔡问钰发布了新的文献求助10
13秒前
Ted完成签到,获得积分10
13秒前
可靠吐司发布了新的文献求助10
13秒前
猪猪发布了新的文献求助10
13秒前
糍粑发布了新的文献求助10
15秒前
hanhan完成签到,获得积分10
15秒前
16秒前
16秒前
火火火完成签到,获得积分10
17秒前
18秒前
刘大晶完成签到,获得积分20
18秒前
19秒前
852应助蔡问钰采纳,获得10
19秒前
19秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896145
求助须知:如何正确求助?哪些是违规求助? 4177840
关于积分的说明 12969394
捐赠科研通 3941069
什么是DOI,文献DOI怎么找? 2162084
邀请新用户注册赠送积分活动 1180518
关于科研通互助平台的介绍 1086076