亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast Customization of Chemical Language Models to Out-of-Distribution Data Sets

计算机科学 个性化 再培训 资产(计算机安全) 修剪 人工智能 数据科学 机器学习 万维网 业务 计算机安全 国际贸易 农学 生物
作者
Alessandra Toniato,Alain C. Vaucher,Marzena Maria Lehmann,Torsten Luksch,Philippe Schwaller,Marco Stenta,Teodoro Laino
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:35 (21): 8806-8815
标识
DOI:10.1021/acs.chemmater.3c01406
摘要

The world is on the verge of a new industrial revolution, and language models are poised to play a pivotal role in this transformative era. Their ability to offer intelligent insights and forecasts has made them a valuable asset for businesses seeking a competitive advantage. The chemical industry, in particular, can benefit significantly from harnessing their power. Since 2016 already, language models have been applied to tasks such as predicting reaction outcomes or retrosynthetic routes. While such models have demonstrated impressive abilities, the lack of publicly available data sets with universal coverage is often the limiting factor for achieving even higher accuracies. This makes it imperative for organizations to incorporate proprietary data sets into their model training processes to improve their performance. So far, however, these data sets frequently remain untapped as there are no established criteria for model customization. In this work, we report a successful methodology for retraining language models on reaction outcome prediction and single-step retrosynthesis tasks, using proprietary, nonpublic data sets. We report a considerable boost in accuracy by combining patent and proprietary data in a multidomain learning formulation. This exercise, inspired by a real-world use case, enables us to formulate guidelines that can be adopted in different corporate settings to customize chemical language models easily.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
31秒前
45秒前
50秒前
顺利毕业完成签到,获得积分10
50秒前
畅畅发布了新的文献求助10
53秒前
顺利毕业发布了新的文献求助10
56秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
1分钟前
雪中完成签到,获得积分10
1分钟前
1分钟前
舒心雨发布了新的文献求助10
1分钟前
CipherSage应助魔幻诗兰采纳,获得10
1分钟前
雪中发布了新的文献求助10
1分钟前
1分钟前
一一应助畅畅采纳,获得20
1分钟前
cahcah应助weihua93采纳,获得30
1分钟前
1分钟前
1分钟前
paradox完成签到 ,获得积分10
2分钟前
烟花应助白玫瑰采纳,获得10
2分钟前
科yt完成签到,获得积分10
2分钟前
勤奋曼雁完成签到 ,获得积分10
2分钟前
科研通AI2S应助丁元英采纳,获得10
2分钟前
阿欢发布了新的文献求助10
3分钟前
3分钟前
3分钟前
白玫瑰发布了新的文献求助10
3分钟前
3分钟前
白玫瑰完成签到,获得积分10
3分钟前
3分钟前
英俊的铭应助阿欢采纳,获得10
3分钟前
4分钟前
凶狠的盛男完成签到 ,获得积分10
4分钟前
林利芳完成签到 ,获得积分10
4分钟前
4分钟前
老肖完成签到 ,获得积分10
4分钟前
4分钟前
CodeCraft应助科研通管家采纳,获得30
4分钟前
情怀应助zulpiye采纳,获得10
5分钟前
dilmurat10发布了新的文献求助10
5分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229679
求助须知:如何正确求助?哪些是违规求助? 2877234
关于积分的说明 8198555
捐赠科研通 2544698
什么是DOI,文献DOI怎么找? 1374568
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621806