An Efficient and Automated Image Preprocessing Using Semantic Segmentation for Improving the 3D Reconstruction of Soybean Plants at the Vegetative Stage

预处理器 分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 匹配(统计) 点云 噪音(视频) 数据预处理 图像(数学) 数学 统计 化学 基因 生物化学
作者
Ya‐Ping Sun,Liyun Miao,Ziming Zhao,Pan Tong,Xueying Wang,Yixin Guo,Dawei Xin,Qingshan Chen,Rong Zhu
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (9): 2388-2388
标识
DOI:10.3390/agronomy13092388
摘要

The investigation of plant phenotypes through 3D modeling has emerged as a significant field in the study of automated plant phenotype acquisition. In 3D model construction, conventional image preprocessing methods exhibit low efficiency and inherent inefficiencies, which increases the difficulty of model construction. In order to ensure the accuracy of the 3D model, while reducing the difficulty of image preprocessing and improving the speed of 3D reconstruction, deep learning semantic segmentation technology was used in the present study to preprocess original images of soybean plants. Additionally, control experiments involving soybean plants of different varieties and different growth periods were conducted. Models based on manual image preprocessing and models based on image segmentation were established. Point cloud matching, distance calculation and model matching degree calculation were carried out. In this study, the DeepLabv3+, Unet, PSPnet and HRnet networks were used to conduct semantic segmentation of the original images of soybean plants in the vegetative stage (V), and Unet network exhibited the optimal test effect. The values of mIoU, mPA, mPrecision and mRecall reached 0.9919, 0.9953, 0.9965 and 0.9953. At the same time, by comparing the distance results and matching accuracy results between the models and the reference models, a conclusion could be drawn that semantic segmentation can effectively improve the challenges of image preprocessing and long reconstruction time, greatly improve the robustness of noise input and ensure the accuracy of the model. Semantic segmentation plays a crucial role as a fundamental component in enabling efficient and automated image preprocessing for 3D reconstruction of soybean plants during the vegetative stage. In the future, semantic segmentation will provide a solution for the pre-processing of 3D reconstruction for other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性翠安完成签到 ,获得积分10
1秒前
黑粉头头完成签到,获得积分10
2秒前
3秒前
0109完成签到,获得积分10
3秒前
腼腆的南晴完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
三伏天发布了新的文献求助10
6秒前
MUAN完成签到 ,获得积分10
7秒前
枝头树上的布谷鸟完成签到 ,获得积分10
8秒前
CQ完成签到 ,获得积分10
8秒前
xqf完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
Qqiao完成签到,获得积分10
11秒前
lililili完成签到,获得积分10
12秒前
火星上的雨柏完成签到 ,获得积分10
13秒前
qwe完成签到,获得积分10
14秒前
bosco完成签到,获得积分10
14秒前
等待念之完成签到,获得积分10
18秒前
smottom完成签到,获得积分0
18秒前
梦若浮生完成签到 ,获得积分10
21秒前
布吉布应助lan采纳,获得30
24秒前
甜甜醉波完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
32秒前
ommphey完成签到 ,获得积分10
33秒前
张zzz完成签到,获得积分10
33秒前
Criminology34应助xyzlancet采纳,获得10
34秒前
丰富荧完成签到 ,获得积分10
35秒前
Edward完成签到,获得积分10
36秒前
调皮的醉山完成签到 ,获得积分10
38秒前
玛卡巴卡完成签到 ,获得积分10
38秒前
77完成签到,获得积分10
39秒前
jingguofu完成签到 ,获得积分10
41秒前
小黄豆完成签到,获得积分10
42秒前
45秒前
吴晨曦完成签到,获得积分10
46秒前
山羊不吃兔完成签到 ,获得积分10
47秒前
123完成签到,获得积分10
47秒前
静翕完成签到 ,获得积分10
48秒前
komisan完成签到 ,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858