亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient and Automated Image Preprocessing Using Semantic Segmentation for Improving the 3D Reconstruction of Soybean Plants at the Vegetative Stage

预处理器 分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 匹配(统计) 点云 噪音(视频) 数据预处理 图像(数学) 数学 统计 化学 基因 生物化学
作者
Ya‐Ping Sun,Liyun Miao,Ziming Zhao,Pan Tong,Xueying Wang,Yixin Guo,Dawei Xin,Qingshan Chen,Rong Zhu
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (9): 2388-2388
标识
DOI:10.3390/agronomy13092388
摘要

The investigation of plant phenotypes through 3D modeling has emerged as a significant field in the study of automated plant phenotype acquisition. In 3D model construction, conventional image preprocessing methods exhibit low efficiency and inherent inefficiencies, which increases the difficulty of model construction. In order to ensure the accuracy of the 3D model, while reducing the difficulty of image preprocessing and improving the speed of 3D reconstruction, deep learning semantic segmentation technology was used in the present study to preprocess original images of soybean plants. Additionally, control experiments involving soybean plants of different varieties and different growth periods were conducted. Models based on manual image preprocessing and models based on image segmentation were established. Point cloud matching, distance calculation and model matching degree calculation were carried out. In this study, the DeepLabv3+, Unet, PSPnet and HRnet networks were used to conduct semantic segmentation of the original images of soybean plants in the vegetative stage (V), and Unet network exhibited the optimal test effect. The values of mIoU, mPA, mPrecision and mRecall reached 0.9919, 0.9953, 0.9965 and 0.9953. At the same time, by comparing the distance results and matching accuracy results between the models and the reference models, a conclusion could be drawn that semantic segmentation can effectively improve the challenges of image preprocessing and long reconstruction time, greatly improve the robustness of noise input and ensure the accuracy of the model. Semantic segmentation plays a crucial role as a fundamental component in enabling efficient and automated image preprocessing for 3D reconstruction of soybean plants during the vegetative stage. In the future, semantic segmentation will provide a solution for the pre-processing of 3D reconstruction for other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Alex完成签到 ,获得积分10
3秒前
SciGPT应助ppt采纳,获得10
5秒前
kyrin发布了新的文献求助15
7秒前
8秒前
忐忑的烤鸡完成签到,获得积分10
8秒前
Sotr发布了新的文献求助10
11秒前
14秒前
ppt发布了新的文献求助10
20秒前
CodeCraft应助lina采纳,获得10
24秒前
43秒前
Sotr完成签到,获得积分10
44秒前
lina发布了新的文献求助10
49秒前
boshi完成签到,获得积分10
50秒前
Sotr关注了科研通微信公众号
54秒前
lina完成签到,获得积分10
1分钟前
1分钟前
肾宝发布了新的文献求助10
1分钟前
zqq完成签到,获得积分0
1分钟前
1分钟前
1分钟前
wzq756发布了新的文献求助10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
含糊的镜子完成签到 ,获得积分20
1分钟前
lovehuahua发布了新的文献求助10
2分钟前
空白格完成签到 ,获得积分10
2分钟前
2分钟前
北执完成签到,获得积分10
2分钟前
Yikao完成签到 ,获得积分10
2分钟前
大胆的碧菡完成签到,获得积分10
2分钟前
12345发布了新的文献求助10
2分钟前
慕青应助lovehuahua采纳,获得10
2分钟前
Akim应助鹤唳采纳,获得10
2分钟前
2分钟前
鹤唳发布了新的文献求助10
3分钟前
3分钟前
鹤唳完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498268
求助须知:如何正确求助?哪些是违规求助? 4595573
关于积分的说明 14449353
捐赠科研通 4528276
什么是DOI,文献DOI怎么找? 2481441
邀请新用户注册赠送积分活动 1465573
关于科研通互助平台的介绍 1438310