An Efficient and Automated Image Preprocessing Using Semantic Segmentation for Improving the 3D Reconstruction of Soybean Plants at the Vegetative Stage

预处理器 分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 匹配(统计) 点云 噪音(视频) 数据预处理 图像(数学) 数学 统计 化学 基因 生物化学
作者
Ya‐Ping Sun,Liyun Miao,Ziming Zhao,Pan Tong,Xueying Wang,Yixin Guo,Dawei Xin,Qingshan Chen,Rong Zhu
出处
期刊:Agronomy [Multidisciplinary Digital Publishing Institute]
卷期号:13 (9): 2388-2388
标识
DOI:10.3390/agronomy13092388
摘要

The investigation of plant phenotypes through 3D modeling has emerged as a significant field in the study of automated plant phenotype acquisition. In 3D model construction, conventional image preprocessing methods exhibit low efficiency and inherent inefficiencies, which increases the difficulty of model construction. In order to ensure the accuracy of the 3D model, while reducing the difficulty of image preprocessing and improving the speed of 3D reconstruction, deep learning semantic segmentation technology was used in the present study to preprocess original images of soybean plants. Additionally, control experiments involving soybean plants of different varieties and different growth periods were conducted. Models based on manual image preprocessing and models based on image segmentation were established. Point cloud matching, distance calculation and model matching degree calculation were carried out. In this study, the DeepLabv3+, Unet, PSPnet and HRnet networks were used to conduct semantic segmentation of the original images of soybean plants in the vegetative stage (V), and Unet network exhibited the optimal test effect. The values of mIoU, mPA, mPrecision and mRecall reached 0.9919, 0.9953, 0.9965 and 0.9953. At the same time, by comparing the distance results and matching accuracy results between the models and the reference models, a conclusion could be drawn that semantic segmentation can effectively improve the challenges of image preprocessing and long reconstruction time, greatly improve the robustness of noise input and ensure the accuracy of the model. Semantic segmentation plays a crucial role as a fundamental component in enabling efficient and automated image preprocessing for 3D reconstruction of soybean plants during the vegetative stage. In the future, semantic segmentation will provide a solution for the pre-processing of 3D reconstruction for other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助zjl900111采纳,获得10
刚刚
菠萝发布了新的文献求助10
刚刚
科目三应助bairimao采纳,获得10
刚刚
yizhi猫发布了新的文献求助10
1秒前
LI发布了新的文献求助10
1秒前
1秒前
在水一方应助光亮嵩采纳,获得30
1秒前
zyzhnu完成签到,获得积分10
2秒前
BING发布了新的文献求助10
2秒前
sos发布了新的文献求助10
2秒前
2秒前
嬛嬛完成签到,获得积分10
3秒前
Frankll发布了新的文献求助150
4秒前
呼呼发布了新的文献求助10
4秒前
4秒前
苹果笑寒发布了新的文献求助20
6秒前
栗子完成签到 ,获得积分10
6秒前
彭于晏应助热塑性哈士奇采纳,获得10
6秒前
momo发布了新的文献求助10
7秒前
欧拉完成签到,获得积分10
7秒前
和平发展发布了新的文献求助10
7秒前
7秒前
qing完成签到,获得积分10
7秒前
慕青应助苹果板栗采纳,获得10
8秒前
8秒前
沉默成沨完成签到,获得积分10
8秒前
SciGPT应助拼搏妙竹采纳,获得10
9秒前
西柚发布了新的文献求助10
9秒前
光亮嵩完成签到,获得积分20
9秒前
10秒前
冷艳的熊猫完成签到,获得积分10
10秒前
10秒前
三新荞发布了新的文献求助10
10秒前
11秒前
Frankll完成签到,获得积分10
11秒前
乐观的幼珊完成签到,获得积分10
12秒前
12秒前
Dr.c发布了新的文献求助10
12秒前
勤奋的半仙完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971091
求助须知:如何正确求助?哪些是违规求助? 3515797
关于积分的说明 11179488
捐赠科研通 3250872
什么是DOI,文献DOI怎么找? 1795536
邀请新用户注册赠送积分活动 875891
科研通“疑难数据库(出版商)”最低求助积分说明 805207