An Efficient and Automated Image Preprocessing Using Semantic Segmentation for Improving the 3D Reconstruction of Soybean Plants at the Vegetative Stage

预处理器 分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 匹配(统计) 点云 噪音(视频) 数据预处理 图像(数学) 数学 统计 化学 基因 生物化学
作者
Ya‐Ping Sun,Liyun Miao,Ziming Zhao,Pan Tong,Xueying Wang,Yixin Guo,Dawei Xin,Qingshan Chen,Rong Zhu
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (9): 2388-2388
标识
DOI:10.3390/agronomy13092388
摘要

The investigation of plant phenotypes through 3D modeling has emerged as a significant field in the study of automated plant phenotype acquisition. In 3D model construction, conventional image preprocessing methods exhibit low efficiency and inherent inefficiencies, which increases the difficulty of model construction. In order to ensure the accuracy of the 3D model, while reducing the difficulty of image preprocessing and improving the speed of 3D reconstruction, deep learning semantic segmentation technology was used in the present study to preprocess original images of soybean plants. Additionally, control experiments involving soybean plants of different varieties and different growth periods were conducted. Models based on manual image preprocessing and models based on image segmentation were established. Point cloud matching, distance calculation and model matching degree calculation were carried out. In this study, the DeepLabv3+, Unet, PSPnet and HRnet networks were used to conduct semantic segmentation of the original images of soybean plants in the vegetative stage (V), and Unet network exhibited the optimal test effect. The values of mIoU, mPA, mPrecision and mRecall reached 0.9919, 0.9953, 0.9965 and 0.9953. At the same time, by comparing the distance results and matching accuracy results between the models and the reference models, a conclusion could be drawn that semantic segmentation can effectively improve the challenges of image preprocessing and long reconstruction time, greatly improve the robustness of noise input and ensure the accuracy of the model. Semantic segmentation plays a crucial role as a fundamental component in enabling efficient and automated image preprocessing for 3D reconstruction of soybean plants during the vegetative stage. In the future, semantic segmentation will provide a solution for the pre-processing of 3D reconstruction for other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甲乙丙丁完成签到,获得积分10
刚刚
jiao完成签到,获得积分10
刚刚
gali完成签到,获得积分10
1秒前
翊然甜周完成签到,获得积分10
1秒前
烟花应助gxf123456采纳,获得10
2秒前
3秒前
科目三应助帆帆帆采纳,获得10
3秒前
lst完成签到,获得积分10
3秒前
jack1511完成签到,获得积分10
3秒前
3秒前
开朗念薇完成签到,获得积分20
3秒前
Gakay完成签到,获得积分10
4秒前
yuhang完成签到,获得积分10
5秒前
xxxx发布了新的文献求助10
6秒前
6秒前
tut完成签到 ,获得积分10
7秒前
coolru完成签到,获得积分10
7秒前
满家归寻发布了新的文献求助10
7秒前
7秒前
Riggle G完成签到,获得积分10
8秒前
日月小完成签到,获得积分10
8秒前
vv1223完成签到,获得积分10
8秒前
未明的感觉完成签到,获得积分10
8秒前
Mint完成签到 ,获得积分10
9秒前
9秒前
小明完成签到,获得积分10
9秒前
HH完成签到,获得积分10
10秒前
MouLi完成签到,获得积分10
10秒前
酷波er应助Jere采纳,获得10
10秒前
清风完成签到 ,获得积分10
11秒前
鲸鱼打滚完成签到 ,获得积分10
11秒前
暴躁的语堂完成签到,获得积分10
11秒前
11秒前
11秒前
光亮西牛完成签到 ,获得积分10
11秒前
Doctor_Peng完成签到,获得积分10
12秒前
zoey完成签到,获得积分10
12秒前
pb完成签到,获得积分10
12秒前
sunny完成签到 ,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568452
求助须知:如何正确求助?哪些是违规求助? 4653069
关于积分的说明 14703693
捐赠科研通 4594883
什么是DOI,文献DOI怎么找? 2521327
邀请新用户注册赠送积分活动 1492973
关于科研通互助平台的介绍 1463778