An Efficient and Automated Image Preprocessing Using Semantic Segmentation for Improving the 3D Reconstruction of Soybean Plants at the Vegetative Stage

预处理器 分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 匹配(统计) 点云 噪音(视频) 数据预处理 图像(数学) 数学 统计 化学 基因 生物化学
作者
Ya‐Ping Sun,Liyun Miao,Ziming Zhao,Pan Tong,Xueying Wang,Yixin Guo,Dawei Xin,Qingshan Chen,Rong Zhu
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (9): 2388-2388
标识
DOI:10.3390/agronomy13092388
摘要

The investigation of plant phenotypes through 3D modeling has emerged as a significant field in the study of automated plant phenotype acquisition. In 3D model construction, conventional image preprocessing methods exhibit low efficiency and inherent inefficiencies, which increases the difficulty of model construction. In order to ensure the accuracy of the 3D model, while reducing the difficulty of image preprocessing and improving the speed of 3D reconstruction, deep learning semantic segmentation technology was used in the present study to preprocess original images of soybean plants. Additionally, control experiments involving soybean plants of different varieties and different growth periods were conducted. Models based on manual image preprocessing and models based on image segmentation were established. Point cloud matching, distance calculation and model matching degree calculation were carried out. In this study, the DeepLabv3+, Unet, PSPnet and HRnet networks were used to conduct semantic segmentation of the original images of soybean plants in the vegetative stage (V), and Unet network exhibited the optimal test effect. The values of mIoU, mPA, mPrecision and mRecall reached 0.9919, 0.9953, 0.9965 and 0.9953. At the same time, by comparing the distance results and matching accuracy results between the models and the reference models, a conclusion could be drawn that semantic segmentation can effectively improve the challenges of image preprocessing and long reconstruction time, greatly improve the robustness of noise input and ensure the accuracy of the model. Semantic segmentation plays a crucial role as a fundamental component in enabling efficient and automated image preprocessing for 3D reconstruction of soybean plants during the vegetative stage. In the future, semantic segmentation will provide a solution for the pre-processing of 3D reconstruction for other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2鱼发布了新的文献求助10
2秒前
贺小刚发布了新的文献求助10
3秒前
样杨羊应助LmaPN7采纳,获得20
3秒前
学术大白完成签到 ,获得积分10
4秒前
乐乐应助334niubi666采纳,获得10
4秒前
魏淑辉完成签到,获得积分10
8秒前
zzl发布了新的文献求助10
8秒前
zp发布了新的文献求助10
9秒前
失眠的蓝完成签到,获得积分10
10秒前
2鱼完成签到,获得积分10
12秒前
爱吃蜜桃的猴子完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
16秒前
Hh发布了新的文献求助10
16秒前
16秒前
16秒前
迅速灵竹发布了新的文献求助10
16秒前
sissiarno应助单身的寄松采纳,获得30
17秒前
完美世界应助real采纳,获得10
19秒前
星辰大海应助real采纳,获得10
19秒前
20秒前
自觉秋烟发布了新的文献求助10
20秒前
寒暄half发布了新的文献求助10
20秒前
22鱼完成签到,获得积分10
21秒前
贺小刚完成签到,获得积分10
21秒前
wanci应助迅速灵竹采纳,获得30
23秒前
334niubi666发布了新的文献求助10
23秒前
Jasper应助猫小海采纳,获得10
24秒前
平常的鞅发布了新的文献求助10
24秒前
29秒前
Hester完成签到,获得积分10
30秒前
abrakadabra关注了科研通微信公众号
31秒前
JamesPei应助houbinghua采纳,获得10
32秒前
平常的鞅完成签到,获得积分10
32秒前
34秒前
大个应助dong采纳,获得10
34秒前
36秒前
丘比特应助qzs采纳,获得10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505840
捐赠科研通 2616702
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648967