亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient and Automated Image Preprocessing Using Semantic Segmentation for Improving the 3D Reconstruction of Soybean Plants at the Vegetative Stage

预处理器 分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 匹配(统计) 点云 噪音(视频) 数据预处理 图像(数学) 数学 统计 化学 基因 生物化学
作者
Ya‐Ping Sun,Liyun Miao,Ziming Zhao,Pan Tong,Xueying Wang,Yixin Guo,Dawei Xin,Qingshan Chen,Rong Zhu
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (9): 2388-2388
标识
DOI:10.3390/agronomy13092388
摘要

The investigation of plant phenotypes through 3D modeling has emerged as a significant field in the study of automated plant phenotype acquisition. In 3D model construction, conventional image preprocessing methods exhibit low efficiency and inherent inefficiencies, which increases the difficulty of model construction. In order to ensure the accuracy of the 3D model, while reducing the difficulty of image preprocessing and improving the speed of 3D reconstruction, deep learning semantic segmentation technology was used in the present study to preprocess original images of soybean plants. Additionally, control experiments involving soybean plants of different varieties and different growth periods were conducted. Models based on manual image preprocessing and models based on image segmentation were established. Point cloud matching, distance calculation and model matching degree calculation were carried out. In this study, the DeepLabv3+, Unet, PSPnet and HRnet networks were used to conduct semantic segmentation of the original images of soybean plants in the vegetative stage (V), and Unet network exhibited the optimal test effect. The values of mIoU, mPA, mPrecision and mRecall reached 0.9919, 0.9953, 0.9965 and 0.9953. At the same time, by comparing the distance results and matching accuracy results between the models and the reference models, a conclusion could be drawn that semantic segmentation can effectively improve the challenges of image preprocessing and long reconstruction time, greatly improve the robustness of noise input and ensure the accuracy of the model. Semantic segmentation plays a crucial role as a fundamental component in enabling efficient and automated image preprocessing for 3D reconstruction of soybean plants during the vegetative stage. In the future, semantic segmentation will provide a solution for the pre-processing of 3D reconstruction for other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
田様应助愉快谷芹采纳,获得10
39秒前
49秒前
愉快谷芹发布了新的文献求助10
55秒前
1分钟前
RONG完成签到 ,获得积分10
1分钟前
sweets完成签到,获得积分10
1分钟前
zly完成签到 ,获得积分10
2分钟前
飞天大南瓜完成签到,获得积分10
2分钟前
3分钟前
YUZHUO完成签到 ,获得积分10
3分钟前
科研小贩完成签到,获得积分10
3分钟前
沉静的安青完成签到,获得积分10
3分钟前
在水一方应助ldtbest0525采纳,获得10
3分钟前
4分钟前
小马甲应助科研通管家采纳,获得10
4分钟前
韶绍完成签到 ,获得积分10
4分钟前
huxuehong完成签到 ,获得积分10
5分钟前
深情安青应助nhh采纳,获得10
5分钟前
6分钟前
6分钟前
胡萝卜完成签到,获得积分10
6分钟前
nhh发布了新的文献求助10
6分钟前
fufufu123完成签到 ,获得积分10
6分钟前
YifanWang应助科研通管家采纳,获得10
6分钟前
YifanWang应助科研通管家采纳,获得10
6分钟前
眼睛大的寄容完成签到 ,获得积分10
6分钟前
6分钟前
ldtbest0525发布了新的文献求助10
6分钟前
kaka完成签到,获得积分0
6分钟前
6分钟前
6分钟前
haohaohao发布了新的文献求助10
7分钟前
7分钟前
8分钟前
9分钟前
automan发布了新的文献求助20
9分钟前
9分钟前
猪仔5号发布了新的文献求助10
10分钟前
手术刀完成签到 ,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302975
求助须知:如何正确求助?哪些是违规求助? 4449990
关于积分的说明 13848891
捐赠科研通 4336388
什么是DOI,文献DOI怎么找? 2380912
邀请新用户注册赠送积分活动 1375861
关于科研通互助平台的介绍 1342300