An Efficient and Automated Image Preprocessing Using Semantic Segmentation for Improving the 3D Reconstruction of Soybean Plants at the Vegetative Stage

预处理器 分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 匹配(统计) 点云 噪音(视频) 数据预处理 图像(数学) 数学 统计 化学 基因 生物化学
作者
Ya‐Ping Sun,Liyun Miao,Ziming Zhao,Pan Tong,Xueying Wang,Yixin Guo,Dawei Xin,Qingshan Chen,Rong Zhu
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (9): 2388-2388
标识
DOI:10.3390/agronomy13092388
摘要

The investigation of plant phenotypes through 3D modeling has emerged as a significant field in the study of automated plant phenotype acquisition. In 3D model construction, conventional image preprocessing methods exhibit low efficiency and inherent inefficiencies, which increases the difficulty of model construction. In order to ensure the accuracy of the 3D model, while reducing the difficulty of image preprocessing and improving the speed of 3D reconstruction, deep learning semantic segmentation technology was used in the present study to preprocess original images of soybean plants. Additionally, control experiments involving soybean plants of different varieties and different growth periods were conducted. Models based on manual image preprocessing and models based on image segmentation were established. Point cloud matching, distance calculation and model matching degree calculation were carried out. In this study, the DeepLabv3+, Unet, PSPnet and HRnet networks were used to conduct semantic segmentation of the original images of soybean plants in the vegetative stage (V), and Unet network exhibited the optimal test effect. The values of mIoU, mPA, mPrecision and mRecall reached 0.9919, 0.9953, 0.9965 and 0.9953. At the same time, by comparing the distance results and matching accuracy results between the models and the reference models, a conclusion could be drawn that semantic segmentation can effectively improve the challenges of image preprocessing and long reconstruction time, greatly improve the robustness of noise input and ensure the accuracy of the model. Semantic segmentation plays a crucial role as a fundamental component in enabling efficient and automated image preprocessing for 3D reconstruction of soybean plants during the vegetative stage. In the future, semantic segmentation will provide a solution for the pre-processing of 3D reconstruction for other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
飞飞完成签到,获得积分10
1秒前
dddddd发布了新的文献求助10
1秒前
……完成签到 ,获得积分10
1秒前
www完成签到,获得积分20
2秒前
明芬发布了新的文献求助10
2秒前
学习使我快乐完成签到 ,获得积分10
2秒前
3秒前
HM完成签到,获得积分10
3秒前
jing发布了新的文献求助10
3秒前
静默发布了新的文献求助10
3秒前
3秒前
自然开山完成签到 ,获得积分10
4秒前
青蛙的第二滴口水完成签到,获得积分10
4秒前
ding应助彩虹捕手采纳,获得10
5秒前
个性语堂发布了新的文献求助10
5秒前
Cytheria发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
友好的匪发布了新的文献求助50
6秒前
6秒前
7秒前
聪慧紫菱完成签到,获得积分10
7秒前
大模型应助Gloyxtg采纳,获得10
7秒前
呆萌初南发布了新的文献求助10
8秒前
紫薇发布了新的文献求助10
8秒前
8秒前
明时完成签到,获得积分10
9秒前
Running完成签到 ,获得积分10
9秒前
个性的荆发布了新的文献求助10
10秒前
fang完成签到 ,获得积分10
10秒前
小海发布了新的文献求助10
10秒前
科研小白发布了新的文献求助30
10秒前
10秒前
OOO发布了新的文献求助10
10秒前
大模型应助平常的小郭采纳,获得10
11秒前
dddddd完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637144
求助须知:如何正确求助?哪些是违规求助? 4742794
关于积分的说明 14998033
捐赠科研通 4795378
什么是DOI,文献DOI怎么找? 2561930
邀请新用户注册赠送积分活动 1521455
关于科研通互助平台的介绍 1481513