清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Efficient and Automated Image Preprocessing Using Semantic Segmentation for Improving the 3D Reconstruction of Soybean Plants at the Vegetative Stage

预处理器 分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 匹配(统计) 点云 噪音(视频) 数据预处理 图像(数学) 数学 统计 化学 基因 生物化学
作者
Ya‐Ping Sun,Liyun Miao,Ziming Zhao,Pan Tong,Xueying Wang,Yixin Guo,Dawei Xin,Qingshan Chen,Rong Zhu
出处
期刊:Agronomy [Multidisciplinary Digital Publishing Institute]
卷期号:13 (9): 2388-2388
标识
DOI:10.3390/agronomy13092388
摘要

The investigation of plant phenotypes through 3D modeling has emerged as a significant field in the study of automated plant phenotype acquisition. In 3D model construction, conventional image preprocessing methods exhibit low efficiency and inherent inefficiencies, which increases the difficulty of model construction. In order to ensure the accuracy of the 3D model, while reducing the difficulty of image preprocessing and improving the speed of 3D reconstruction, deep learning semantic segmentation technology was used in the present study to preprocess original images of soybean plants. Additionally, control experiments involving soybean plants of different varieties and different growth periods were conducted. Models based on manual image preprocessing and models based on image segmentation were established. Point cloud matching, distance calculation and model matching degree calculation were carried out. In this study, the DeepLabv3+, Unet, PSPnet and HRnet networks were used to conduct semantic segmentation of the original images of soybean plants in the vegetative stage (V), and Unet network exhibited the optimal test effect. The values of mIoU, mPA, mPrecision and mRecall reached 0.9919, 0.9953, 0.9965 and 0.9953. At the same time, by comparing the distance results and matching accuracy results between the models and the reference models, a conclusion could be drawn that semantic segmentation can effectively improve the challenges of image preprocessing and long reconstruction time, greatly improve the robustness of noise input and ensure the accuracy of the model. Semantic segmentation plays a crucial role as a fundamental component in enabling efficient and automated image preprocessing for 3D reconstruction of soybean plants during the vegetative stage. In the future, semantic segmentation will provide a solution for the pre-processing of 3D reconstruction for other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助150
8秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
NINI完成签到 ,获得积分10
56秒前
27完成签到 ,获得积分10
57秒前
隐形曼青应助一二采纳,获得10
1分钟前
油菜花完成签到,获得积分10
1分钟前
2分钟前
一二发布了新的文献求助10
2分钟前
3分钟前
Johnny发布了新的文献求助10
3分钟前
Johnny完成签到,获得积分10
3分钟前
菠萝包完成签到 ,获得积分10
4分钟前
FashionBoy应助科研通管家采纳,获得10
4分钟前
事不过三应助Lee采纳,获得10
5分钟前
Lee完成签到,获得积分10
5分钟前
小点完成签到 ,获得积分10
5分钟前
裕小完成签到 ,获得积分20
6分钟前
晴莹完成签到 ,获得积分10
6分钟前
星辰大海应助水厂小白采纳,获得10
8分钟前
韩寒完成签到 ,获得积分10
8分钟前
8分钟前
水厂小白发布了新的文献求助10
8分钟前
爆米花应助科研通管家采纳,获得150
8分钟前
nanfang完成签到 ,获得积分10
9分钟前
Qvby3完成签到 ,获得积分10
9分钟前
量子星尘发布了新的文献求助10
10分钟前
John完成签到,获得积分10
10分钟前
John发布了新的文献求助10
10分钟前
南星完成签到 ,获得积分10
10分钟前
上官若男应助水厂小白采纳,获得10
10分钟前
11分钟前
水厂小白发布了新的文献求助10
11分钟前
两个榴莲完成签到,获得积分0
11分钟前
糟糕的翅膀完成签到,获得积分10
12分钟前
13分钟前
平凡之路发布了新的文献求助10
13分钟前
Ma完成签到,获得积分10
14分钟前
激动的似狮完成签到,获得积分10
15分钟前
fabius0351完成签到 ,获得积分10
15分钟前
linglingling完成签到 ,获得积分10
15分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5138272
求助须知:如何正确求助?哪些是违规求助? 4337653
关于积分的说明 13511752
捐赠科研通 4176594
什么是DOI,文献DOI怎么找? 2290125
邀请新用户注册赠送积分活动 1290620
关于科研通互助平台的介绍 1232626