An Efficient and Automated Image Preprocessing Using Semantic Segmentation for Improving the 3D Reconstruction of Soybean Plants at the Vegetative Stage

预处理器 分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 匹配(统计) 点云 噪音(视频) 数据预处理 图像(数学) 数学 统计 化学 基因 生物化学
作者
Ya‐Ping Sun,Liyun Miao,Ziming Zhao,Pan Tong,Xueying Wang,Yixin Guo,Dawei Xin,Qingshan Chen,Rong Zhu
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (9): 2388-2388
标识
DOI:10.3390/agronomy13092388
摘要

The investigation of plant phenotypes through 3D modeling has emerged as a significant field in the study of automated plant phenotype acquisition. In 3D model construction, conventional image preprocessing methods exhibit low efficiency and inherent inefficiencies, which increases the difficulty of model construction. In order to ensure the accuracy of the 3D model, while reducing the difficulty of image preprocessing and improving the speed of 3D reconstruction, deep learning semantic segmentation technology was used in the present study to preprocess original images of soybean plants. Additionally, control experiments involving soybean plants of different varieties and different growth periods were conducted. Models based on manual image preprocessing and models based on image segmentation were established. Point cloud matching, distance calculation and model matching degree calculation were carried out. In this study, the DeepLabv3+, Unet, PSPnet and HRnet networks were used to conduct semantic segmentation of the original images of soybean plants in the vegetative stage (V), and Unet network exhibited the optimal test effect. The values of mIoU, mPA, mPrecision and mRecall reached 0.9919, 0.9953, 0.9965 and 0.9953. At the same time, by comparing the distance results and matching accuracy results between the models and the reference models, a conclusion could be drawn that semantic segmentation can effectively improve the challenges of image preprocessing and long reconstruction time, greatly improve the robustness of noise input and ensure the accuracy of the model. Semantic segmentation plays a crucial role as a fundamental component in enabling efficient and automated image preprocessing for 3D reconstruction of soybean plants during the vegetative stage. In the future, semantic segmentation will provide a solution for the pre-processing of 3D reconstruction for other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxe完成签到,获得积分10
1秒前
爱笑的汽车发布了新的文献求助200
1秒前
2秒前
2秒前
Nickname发布了新的文献求助200
3秒前
ann发布了新的文献求助10
3秒前
CipherSage应助MU采纳,获得50
3秒前
Yuan完成签到,获得积分10
5秒前
hx666发布了新的文献求助10
6秒前
橙花发布了新的文献求助10
7秒前
西蜀小吏发布了新的文献求助10
7秒前
李爱国应助17采纳,获得10
8秒前
8秒前
8秒前
Frieren完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
Akim应助enen采纳,获得10
10秒前
10秒前
深情安青应助momobobi采纳,获得20
10秒前
失眠翠芙完成签到,获得积分10
11秒前
ting5260发布了新的文献求助10
11秒前
李世航完成签到 ,获得积分20
11秒前
Owen应助自由寻冬采纳,获得10
13秒前
向日葵发布了新的文献求助10
15秒前
Gotye0829完成签到,获得积分10
15秒前
15秒前
aa完成签到,获得积分10
15秒前
李世航关注了科研通微信公众号
16秒前
LCY发布了新的文献求助10
16秒前
hsa_ID发布了新的文献求助10
16秒前
王肖宁完成签到,获得积分10
17秒前
李健应助ting5260采纳,获得10
18秒前
19秒前
芒go发布了新的文献求助10
19秒前
充电宝应助小昊采纳,获得10
19秒前
aa发布了新的文献求助20
21秒前
量子星尘发布了新的文献求助10
21秒前
xxfsx应助kmkz采纳,获得10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513655
求助须知:如何正确求助?哪些是违规求助? 4607855
关于积分的说明 14507128
捐赠科研通 4543421
什么是DOI,文献DOI怎么找? 2489541
邀请新用户注册赠送积分活动 1471503
关于科研通互助平台的介绍 1443477