An Efficient and Automated Image Preprocessing Using Semantic Segmentation for Improving the 3D Reconstruction of Soybean Plants at the Vegetative Stage

预处理器 分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 匹配(统计) 点云 噪音(视频) 数据预处理 图像(数学) 数学 统计 化学 基因 生物化学
作者
Ya‐Ping Sun,Liyun Miao,Ziming Zhao,Pan Tong,Xueying Wang,Yixin Guo,Dawei Xin,Qingshan Chen,Rong Zhu
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (9): 2388-2388
标识
DOI:10.3390/agronomy13092388
摘要

The investigation of plant phenotypes through 3D modeling has emerged as a significant field in the study of automated plant phenotype acquisition. In 3D model construction, conventional image preprocessing methods exhibit low efficiency and inherent inefficiencies, which increases the difficulty of model construction. In order to ensure the accuracy of the 3D model, while reducing the difficulty of image preprocessing and improving the speed of 3D reconstruction, deep learning semantic segmentation technology was used in the present study to preprocess original images of soybean plants. Additionally, control experiments involving soybean plants of different varieties and different growth periods were conducted. Models based on manual image preprocessing and models based on image segmentation were established. Point cloud matching, distance calculation and model matching degree calculation were carried out. In this study, the DeepLabv3+, Unet, PSPnet and HRnet networks were used to conduct semantic segmentation of the original images of soybean plants in the vegetative stage (V), and Unet network exhibited the optimal test effect. The values of mIoU, mPA, mPrecision and mRecall reached 0.9919, 0.9953, 0.9965 and 0.9953. At the same time, by comparing the distance results and matching accuracy results between the models and the reference models, a conclusion could be drawn that semantic segmentation can effectively improve the challenges of image preprocessing and long reconstruction time, greatly improve the robustness of noise input and ensure the accuracy of the model. Semantic segmentation plays a crucial role as a fundamental component in enabling efficient and automated image preprocessing for 3D reconstruction of soybean plants during the vegetative stage. In the future, semantic segmentation will provide a solution for the pre-processing of 3D reconstruction for other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吼吼哈哈发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
刘家成关注了科研通微信公众号
1秒前
wqxg140512发布了新的文献求助20
1秒前
liuhe完成签到,获得积分10
2秒前
hahakeyan完成签到,获得积分10
2秒前
Espoir完成签到,获得积分10
2秒前
2秒前
的y应助hahaha采纳,获得10
4秒前
4秒前
4秒前
4秒前
一半可发布了新的文献求助10
4秒前
可爱的函函应助SUNYAOSUNYAO采纳,获得10
5秒前
半岛铁盒发布了新的文献求助10
5秒前
Orange应助舒服的茹嫣采纳,获得10
5秒前
共享精神应助wave采纳,获得10
6秒前
7秒前
王多鱼发布了新的文献求助10
7秒前
8秒前
澪愀发布了新的文献求助10
8秒前
万能图书馆应助老农民采纳,获得10
8秒前
fleix完成签到,获得积分20
8秒前
anyon发布了新的文献求助10
9秒前
科研通AI6应助123采纳,获得10
9秒前
Dr.coco发布了新的文献求助30
9秒前
大个应助郝君颖采纳,获得10
9秒前
慕青应助qiushui采纳,获得10
10秒前
蓁蓁完成签到,获得积分10
10秒前
lpk发布了新的文献求助10
10秒前
xin发布了新的文献求助10
10秒前
致两千年前的你完成签到,获得积分10
10秒前
JamesPei应助高高的毒娘采纳,获得10
10秒前
11秒前
蓝胖砸完成签到,获得积分10
11秒前
11秒前
李庭福发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552039
求助须知:如何正确求助?哪些是违规求助? 4636877
关于积分的说明 14646248
捐赠科研通 4578705
什么是DOI,文献DOI怎么找? 2511074
邀请新用户注册赠送积分活动 1486286
关于科研通互助平台的介绍 1457502