An Efficient and Automated Image Preprocessing Using Semantic Segmentation for Improving the 3D Reconstruction of Soybean Plants at the Vegetative Stage

预处理器 分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 匹配(统计) 点云 噪音(视频) 数据预处理 图像(数学) 数学 统计 化学 基因 生物化学
作者
Ya‐Ping Sun,Liyun Miao,Ziming Zhao,Pan Tong,Xueying Wang,Yixin Guo,Dawei Xin,Qingshan Chen,Rong Zhu
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (9): 2388-2388
标识
DOI:10.3390/agronomy13092388
摘要

The investigation of plant phenotypes through 3D modeling has emerged as a significant field in the study of automated plant phenotype acquisition. In 3D model construction, conventional image preprocessing methods exhibit low efficiency and inherent inefficiencies, which increases the difficulty of model construction. In order to ensure the accuracy of the 3D model, while reducing the difficulty of image preprocessing and improving the speed of 3D reconstruction, deep learning semantic segmentation technology was used in the present study to preprocess original images of soybean plants. Additionally, control experiments involving soybean plants of different varieties and different growth periods were conducted. Models based on manual image preprocessing and models based on image segmentation were established. Point cloud matching, distance calculation and model matching degree calculation were carried out. In this study, the DeepLabv3+, Unet, PSPnet and HRnet networks were used to conduct semantic segmentation of the original images of soybean plants in the vegetative stage (V), and Unet network exhibited the optimal test effect. The values of mIoU, mPA, mPrecision and mRecall reached 0.9919, 0.9953, 0.9965 and 0.9953. At the same time, by comparing the distance results and matching accuracy results between the models and the reference models, a conclusion could be drawn that semantic segmentation can effectively improve the challenges of image preprocessing and long reconstruction time, greatly improve the robustness of noise input and ensure the accuracy of the model. Semantic segmentation plays a crucial role as a fundamental component in enabling efficient and automated image preprocessing for 3D reconstruction of soybean plants during the vegetative stage. In the future, semantic segmentation will provide a solution for the pre-processing of 3D reconstruction for other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
marinemiao发布了新的文献求助10
刚刚
111完成签到 ,获得积分10
刚刚
无辜黑夜完成签到,获得积分10
1秒前
2秒前
今夜不设防完成签到,获得积分10
2秒前
李健应助木子采纳,获得10
3秒前
爆米花发布了新的文献求助10
3秒前
3秒前
3秒前
可靠的老鼠完成签到,获得积分10
4秒前
落寞依珊应助master-f采纳,获得10
4秒前
wbh发布了新的文献求助10
5秒前
田様应助hu970采纳,获得10
5秒前
科研通AI2S应助钟是一梦采纳,获得10
5秒前
zzz完成签到,获得积分20
6秒前
好玩和有趣完成签到,获得积分10
6秒前
脂蛋白抗原完成签到,获得积分10
6秒前
6秒前
6秒前
虫虫完成签到,获得积分10
6秒前
7秒前
7秒前
喜悦的向珊完成签到,获得积分10
7秒前
7秒前
科研狗发布了新的文献求助10
7秒前
清爽绿凝发布了新的文献求助10
7秒前
7秒前
大个应助佰斯特威采纳,获得10
8秒前
JingP完成签到,获得积分10
9秒前
赘婿应助yuyu采纳,获得10
9秒前
蔡翌文完成签到 ,获得积分10
9秒前
crescendo完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
plumcute完成签到,获得积分10
10秒前
cybbbbbb发布了新的文献求助10
11秒前
名丿完成签到,获得积分10
11秒前
11秒前
网上飞完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740