亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient and Automated Image Preprocessing Using Semantic Segmentation for Improving the 3D Reconstruction of Soybean Plants at the Vegetative Stage

预处理器 分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 匹配(统计) 点云 噪音(视频) 数据预处理 图像(数学) 数学 统计 化学 基因 生物化学
作者
Ya‐Ping Sun,Liyun Miao,Ziming Zhao,Pan Tong,Xueying Wang,Yixin Guo,Dawei Xin,Qingshan Chen,Rong Zhu
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (9): 2388-2388
标识
DOI:10.3390/agronomy13092388
摘要

The investigation of plant phenotypes through 3D modeling has emerged as a significant field in the study of automated plant phenotype acquisition. In 3D model construction, conventional image preprocessing methods exhibit low efficiency and inherent inefficiencies, which increases the difficulty of model construction. In order to ensure the accuracy of the 3D model, while reducing the difficulty of image preprocessing and improving the speed of 3D reconstruction, deep learning semantic segmentation technology was used in the present study to preprocess original images of soybean plants. Additionally, control experiments involving soybean plants of different varieties and different growth periods were conducted. Models based on manual image preprocessing and models based on image segmentation were established. Point cloud matching, distance calculation and model matching degree calculation were carried out. In this study, the DeepLabv3+, Unet, PSPnet and HRnet networks were used to conduct semantic segmentation of the original images of soybean plants in the vegetative stage (V), and Unet network exhibited the optimal test effect. The values of mIoU, mPA, mPrecision and mRecall reached 0.9919, 0.9953, 0.9965 and 0.9953. At the same time, by comparing the distance results and matching accuracy results between the models and the reference models, a conclusion could be drawn that semantic segmentation can effectively improve the challenges of image preprocessing and long reconstruction time, greatly improve the robustness of noise input and ensure the accuracy of the model. Semantic segmentation plays a crucial role as a fundamental component in enabling efficient and automated image preprocessing for 3D reconstruction of soybean plants during the vegetative stage. In the future, semantic segmentation will provide a solution for the pre-processing of 3D reconstruction for other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
41秒前
李健应助ARESCI采纳,获得10
1分钟前
samsahpiyaz发布了新的文献求助10
1分钟前
犹豫翠萱完成签到 ,获得积分10
2分钟前
老迟到的羊完成签到 ,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
3分钟前
moonlight发布了新的文献求助10
3分钟前
gjq完成签到,获得积分10
3分钟前
hhuajw完成签到,获得积分10
4分钟前
烂漫的芫完成签到 ,获得积分10
4分钟前
4分钟前
爱思考的小笨笨完成签到,获得积分10
4分钟前
4分钟前
obedVL完成签到,获得积分10
4分钟前
昵称已挥发完成签到,获得积分10
4分钟前
sldragon完成签到,获得积分10
5分钟前
5分钟前
xiaoyuan发布了新的文献求助10
5分钟前
小黄还你好完成签到 ,获得积分10
5分钟前
LYL完成签到,获得积分10
5分钟前
Wei发布了新的文献求助10
6分钟前
6分钟前
群山完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
脑洞疼应助米兰的小铁匠采纳,获得10
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
9分钟前
gszy1975完成签到,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
SciGPT应助务实的犀牛采纳,获得10
10分钟前
冉亦完成签到,获得积分10
10分钟前
11分钟前
yhw发布了新的文献求助10
11分钟前
Jay完成签到,获得积分10
11分钟前
空里叽哇完成签到,获得积分10
12分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584704
求助须知:如何正确求助?哪些是违规求助? 4668646
关于积分的说明 14771521
捐赠科研通 4613528
什么是DOI,文献DOI怎么找? 2530193
邀请新用户注册赠送积分活动 1499072
关于科研通互助平台的介绍 1467516