亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiscale Neighborhood Attention Transformer With Optimized Spatial Pattern for Hyperspectral Image Classification

高光谱成像 计算机科学 卷积神经网络 变压器 人工智能 模式识别(心理学) 像素 特征提取 深度学习 源代码 物理 量子力学 电压 操作系统
作者
Xin Qiao,Swalpa Kumar Roy,Weimin Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:17
标识
DOI:10.1109/tgrs.2023.3314550
摘要

Hyperspectral images (HSIs) provide hundreds of continuous spectral bands and have been widely used for the fine identification of targets with similar appearances. In earlier studies, convolutional neural networks (CNNs) have been an effective method for HSIs classification due to their powerful feature extraction capabilities. Recently, self-attention-based vision transformer (ViT) architecture has been widely explored to fully represent global information. However, most existing transformer-based models primarily focus on global relationships and lack the ability to capture the multi-scale features which are crucial for HSIs classification. This limitation results in inferior performance for transformer-based methods compared to state-of-the-art CNN-based models. To solve this problem, a novel network called multi-scale neighborhood attention transformer (MSNAT) is proposed in this paper. Unlike previous transformer-based models, MSNAT emphasizes the neighborhood pixels within a local window size and extracts multi-scale spatial information by using different local window sizes. In addition, a spatial transformation module is integrated to generate optimized spatial input. The effectiveness of the proposed MSNAT is verified on three real hyperspectral datasets including University of Pavia (UP), University of Houston (UH), and University of Trento (UT). Experimental results demonstrate that the proposed MSNAT method outperforms both CNNs and existing transformer-based models, achieving state-of-the-art classification performance with an overall accuracy of 93.34%, 86.26%, and 96.63% on UP, UH, and UT, respectively. The source code will be available at https://github.com/xinqiao123/MSNAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiii发布了新的文献求助10
4秒前
JamesPei应助魏欣娜采纳,获得10
23秒前
研友_VZG7GZ应助orangel采纳,获得10
29秒前
31秒前
金沐栋发布了新的文献求助10
34秒前
52秒前
Rachel发布了新的文献求助10
57秒前
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
orixero应助契合采纳,获得20
1分钟前
1分钟前
Lucas应助潇洒荧荧采纳,获得10
1分钟前
契合发布了新的文献求助20
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
CodeCraft应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
隐形曼青应助踏实白柏采纳,获得10
2分钟前
研友_VZG7GZ应助契合采纳,获得20
2分钟前
大个应助淡然的念珍采纳,获得10
2分钟前
夹心就是嘉欣呀完成签到,获得积分10
2分钟前
2分钟前
今后应助夹心就是嘉欣呀采纳,获得10
2分钟前
华西招生版完成签到,获得积分10
2分钟前
契合发布了新的文献求助20
2分钟前
慕青应助Huzhu采纳,获得10
2分钟前
2分钟前
风华正茂完成签到,获得积分10
3分钟前
3分钟前
123发布了新的文献求助10
3分钟前
群山完成签到 ,获得积分10
3分钟前
3分钟前
魏欣娜发布了新的文献求助10
3分钟前
科目三应助badabadaba采纳,获得30
3分钟前
阿瓜师傅发布了新的文献求助10
3分钟前
NI完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177