Multiscale Neighborhood Attention Transformer With Optimized Spatial Pattern for Hyperspectral Image Classification

高光谱成像 计算机科学 卷积神经网络 变压器 人工智能 模式识别(心理学) 像素 特征提取 深度学习 源代码 量子力学 操作系统 物理 电压
作者
Xin Qiao,Swalpa Kumar Roy,Weimin Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:17
标识
DOI:10.1109/tgrs.2023.3314550
摘要

Hyperspectral images (HSIs) provide hundreds of continuous spectral bands and have been widely used for the fine identification of targets with similar appearances. In earlier studies, convolutional neural networks (CNNs) have been an effective method for HSIs classification due to their powerful feature extraction capabilities. Recently, self-attention-based vision transformer (ViT) architecture has been widely explored to fully represent global information. However, most existing transformer-based models primarily focus on global relationships and lack the ability to capture the multi-scale features which are crucial for HSIs classification. This limitation results in inferior performance for transformer-based methods compared to state-of-the-art CNN-based models. To solve this problem, a novel network called multi-scale neighborhood attention transformer (MSNAT) is proposed in this paper. Unlike previous transformer-based models, MSNAT emphasizes the neighborhood pixels within a local window size and extracts multi-scale spatial information by using different local window sizes. In addition, a spatial transformation module is integrated to generate optimized spatial input. The effectiveness of the proposed MSNAT is verified on three real hyperspectral datasets including University of Pavia (UP), University of Houston (UH), and University of Trento (UT). Experimental results demonstrate that the proposed MSNAT method outperforms both CNNs and existing transformer-based models, achieving state-of-the-art classification performance with an overall accuracy of 93.34%, 86.26%, and 96.63% on UP, UH, and UT, respectively. The source code will be available at https://github.com/xinqiao123/MSNAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
秀丽绿真完成签到,获得积分10
1秒前
等待毛豆完成签到,获得积分10
1秒前
Jasper应助淡然的夜柳采纳,获得10
1秒前
库凯伊完成签到,获得积分10
2秒前
猹尔斯完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
蓓蕾发布了新的文献求助10
3秒前
37发布了新的文献求助10
5秒前
5秒前
5秒前
猹尔斯发布了新的文献求助10
6秒前
6秒前
YSHZ完成签到,获得积分20
6秒前
所所应助鳗鱼友灵采纳,获得10
7秒前
8秒前
ED应助dropofwater采纳,获得10
8秒前
YSHZ发布了新的文献求助10
10秒前
10秒前
klbzw03发布了新的文献求助10
11秒前
11秒前
chengwenyu发布了新的文献求助10
11秒前
12秒前
14秒前
15秒前
哦啦啦完成签到,获得积分10
15秒前
axiba发布了新的文献求助20
15秒前
16秒前
16秒前
16秒前
16秒前
16秒前
吴垚应助科研通管家采纳,获得20
17秒前
17秒前
lmy完成签到,获得积分10
17秒前
17秒前
英俊的铭应助幸运的羔羊采纳,获得10
17秒前
YN发布了新的文献求助20
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951271
求助须知:如何正确求助?哪些是违规求助? 3496677
关于积分的说明 11083785
捐赠科研通 3227103
什么是DOI,文献DOI怎么找? 1784263
邀请新用户注册赠送积分活动 868293
科研通“疑难数据库(出版商)”最低求助积分说明 801102