Multiscale Neighborhood Attention Transformer With Optimized Spatial Pattern for Hyperspectral Image Classification

高光谱成像 计算机科学 卷积神经网络 变压器 人工智能 模式识别(心理学) 像素 特征提取 深度学习 源代码 量子力学 操作系统 物理 电压
作者
Xin Qiao,Swalpa Kumar Roy,Weimin Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:17
标识
DOI:10.1109/tgrs.2023.3314550
摘要

Hyperspectral images (HSIs) provide hundreds of continuous spectral bands and have been widely used for the fine identification of targets with similar appearances. In earlier studies, convolutional neural networks (CNNs) have been an effective method for HSIs classification due to their powerful feature extraction capabilities. Recently, self-attention-based vision transformer (ViT) architecture has been widely explored to fully represent global information. However, most existing transformer-based models primarily focus on global relationships and lack the ability to capture the multi-scale features which are crucial for HSIs classification. This limitation results in inferior performance for transformer-based methods compared to state-of-the-art CNN-based models. To solve this problem, a novel network called multi-scale neighborhood attention transformer (MSNAT) is proposed in this paper. Unlike previous transformer-based models, MSNAT emphasizes the neighborhood pixels within a local window size and extracts multi-scale spatial information by using different local window sizes. In addition, a spatial transformation module is integrated to generate optimized spatial input. The effectiveness of the proposed MSNAT is verified on three real hyperspectral datasets including University of Pavia (UP), University of Houston (UH), and University of Trento (UT). Experimental results demonstrate that the proposed MSNAT method outperforms both CNNs and existing transformer-based models, achieving state-of-the-art classification performance with an overall accuracy of 93.34%, 86.26%, and 96.63% on UP, UH, and UT, respectively. The source code will be available at https://github.com/xinqiao123/MSNAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
悦耳的乐松完成签到,获得积分10
1秒前
yuan完成签到,获得积分10
2秒前
2秒前
Okpooko完成签到,获得积分10
2秒前
1l2kl完成签到,获得积分10
2秒前
2秒前
慕楠完成签到,获得积分10
2秒前
MG_aichy发布了新的文献求助10
3秒前
3秒前
LLLLLL发布了新的文献求助10
3秒前
3秒前
小李应助99采纳,获得10
4秒前
4秒前
完美世界应助YangMengJing_采纳,获得10
4秒前
mr_wang发布了新的文献求助10
5秒前
我是美丽完成签到,获得积分10
5秒前
打打应助Donby采纳,获得10
5秒前
jjgbmt完成签到,获得积分20
5秒前
paper完成签到 ,获得积分10
5秒前
cyr完成签到,获得积分10
5秒前
Dylan完成签到 ,获得积分10
6秒前
7秒前
7秒前
脑洞疼应助研友_Z600BL采纳,获得10
7秒前
wergou完成签到,获得积分10
7秒前
逍遥完成签到,获得积分10
9秒前
优雅冰蝶发布了新的文献求助10
9秒前
。。。完成签到,获得积分10
9秒前
9秒前
ls沈小天发布了新的文献求助10
9秒前
9秒前
Jiawww完成签到,获得积分10
9秒前
SaSa发布了新的文献求助10
9秒前
无非一念发布了新的文献求助10
10秒前
子然完成签到,获得积分10
10秒前
中央戏精学院完成签到,获得积分10
10秒前
10秒前
星辰大海应助zychaos采纳,获得10
10秒前
浥青竹发布了新的文献求助10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
An Introduction to Child Language 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299125
求助须知:如何正确求助?哪些是违规求助? 2934137
关于积分的说明 8467404
捐赠科研通 2607589
什么是DOI,文献DOI怎么找? 1423778
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645351