A machine learning-based choledocholithiasis prediction tool to improve ERCP decision making: a proof-of-concept study

医学 内镜逆行胰胆管造影术 接收机工作特性 模式 机器学习 Boosting(机器学习) 内窥镜检查 危险分层 队列 人工智能 医学物理学 放射科 外科 内科学 胰腺炎 计算机科学 社会科学 社会学
作者
Steven N. Steinway,Bo‐Hao Tang,Brian Caffo,Venkata S. Akshintala,Jeremy Telezing,Aditya Ashok,Ayesha Kamal,Chung Yao Yu,Nitin Jagtap,James Buxbaum,Joseph Elmunzer,Sachin Wani,Mouen A. Khashab
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:56 (03): 165-171 被引量:12
标识
DOI:10.1055/a-2174-0534
摘要

Abstract Background Previous studies demonstrated limited accuracy of existing guidelines for predicting choledocholithiasis, leading to overutilization of endoscopic retrograde cholangiopancreatography (ERCP). More accurate stratification may improve patient selection for ERCP and allow use of lower-risk modalities. Methods A machine learning model was developed using patient information from two published cohort studies that evaluated performance of guidelines in predicting choledocholithiasis. Prediction models were developed using the gradient boosting model (GBM) machine learning method. GBM performance was evaluated using 10-fold cross-validation and area under the receiver operating characteristic curve (AUC). Important predictors of choledocholithiasis were identified based on relative importance in the GBM. Results 1378 patients (mean age 43.3 years; 61.2% female) were included in the GBM and 59.4% had choledocholithiasis. Eight variables were identified as predictors of choledocholithiasis. The GBM had accuracy of 71.5% (SD 2.5%) (AUC 0.79 [SD 0.06]) and performed better than the 2019 American Society for Gastrointestinal Endoscopy (ASGE) guidelines (accuracy 62.4% [SD 2.6%]; AUC 0.63 [SD 0.03]) and European Society of Gastrointestinal Endoscopy (ESGE) guidelines (accuracy 62.8% [SD 2.6%]; AUC 0.67 [SD 0.02]). The GBM correctly categorized 22% of patients directed to unnecessary ERCP by ASGE guidelines, and appropriately recommended as the next management step 48% of ERCPs incorrectly rejected by ESGE guidelines. Conclusions A machine learning-based tool was created, providing real-time, personalized, objective probability of choledocholithiasis and ERCP recommendations. This more accurately directed ERCP use than existing ASGE and ESGE guidelines, and has the potential to reduce morbidity associated with ERCP or missed choledocholithiasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理冷梅完成签到 ,获得积分10
刚刚
想睡觉的小笼包完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
5秒前
小白完成签到,获得积分10
5秒前
6秒前
7秒前
小叶间静脉完成签到,获得积分10
8秒前
跳跃豆芽完成签到 ,获得积分10
8秒前
夜琉璃完成签到 ,获得积分10
10秒前
11秒前
雷欧奥特曼完成签到,获得积分10
12秒前
米九完成签到 ,获得积分10
12秒前
12秒前
CocoGabrielle发布了新的文献求助10
13秒前
最好完成签到,获得积分10
13秒前
吼吼哈嘿完成签到 ,获得积分10
13秒前
淡淡菠萝完成签到 ,获得积分10
14秒前
来篇nature完成签到 ,获得积分10
14秒前
shenzhou9完成签到,获得积分10
14秒前
xavier完成签到,获得积分10
15秒前
害羞的裘完成签到 ,获得积分10
15秒前
nqterysc完成签到,获得积分10
15秒前
涂山白切鸡完成签到,获得积分10
15秒前
16秒前
萝卜青菜完成签到 ,获得积分10
17秒前
阿白先生完成签到,获得积分10
17秒前
鱼女士完成签到,获得积分10
18秒前
shift3310完成签到,获得积分10
18秒前
冬瓜发布了新的文献求助10
18秒前
妖妖完成签到,获得积分10
19秒前
Zikc完成签到,获得积分10
19秒前
20秒前
LVEMI完成签到,获得积分10
21秒前
21秒前
小茗同学完成签到,获得积分10
22秒前
22秒前
阎林完成签到,获得积分10
22秒前
Zlinco完成签到,获得积分10
23秒前
跳跃的鹏飞完成签到 ,获得积分10
23秒前
W_G完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427010
求助须知:如何正确求助?哪些是违规求助? 4540570
关于积分的说明 14172664
捐赠科研通 4458481
什么是DOI,文献DOI怎么找? 2445033
邀请新用户注册赠送积分活动 1436101
关于科研通互助平台的介绍 1413645