A machine learning-based choledocholithiasis prediction tool to improve ERCP decision making: a proof-of-concept study

医学 内镜逆行胰胆管造影术 接收机工作特性 模式 机器学习 Boosting(机器学习) 内窥镜检查 危险分层 队列 人工智能 医学物理学 放射科 外科 内科学 胰腺炎 计算机科学 社会科学 社会学
作者
Steven N. Steinway,Bo‐Hao Tang,Brian Caffo,Venkata S. Akshintala,Jeremy Telezing,Aditya Ashok,Ayesha Kamal,Chung Yao Yu,Nitin Jagtap,James Buxbaum,Joseph Elmunzer,Sachin Wani,Mouen A. Khashab
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:56 (03): 165-171 被引量:7
标识
DOI:10.1055/a-2174-0534
摘要

Abstract Background Previous studies demonstrated limited accuracy of existing guidelines for predicting choledocholithiasis, leading to overutilization of endoscopic retrograde cholangiopancreatography (ERCP). More accurate stratification may improve patient selection for ERCP and allow use of lower-risk modalities. Methods A machine learning model was developed using patient information from two published cohort studies that evaluated performance of guidelines in predicting choledocholithiasis. Prediction models were developed using the gradient boosting model (GBM) machine learning method. GBM performance was evaluated using 10-fold cross-validation and area under the receiver operating characteristic curve (AUC). Important predictors of choledocholithiasis were identified based on relative importance in the GBM. Results 1378 patients (mean age 43.3 years; 61.2% female) were included in the GBM and 59.4% had choledocholithiasis. Eight variables were identified as predictors of choledocholithiasis. The GBM had accuracy of 71.5% (SD 2.5%) (AUC 0.79 [SD 0.06]) and performed better than the 2019 American Society for Gastrointestinal Endoscopy (ASGE) guidelines (accuracy 62.4% [SD 2.6%]; AUC 0.63 [SD 0.03]) and European Society of Gastrointestinal Endoscopy (ESGE) guidelines (accuracy 62.8% [SD 2.6%]; AUC 0.67 [SD 0.02]). The GBM correctly categorized 22% of patients directed to unnecessary ERCP by ASGE guidelines, and appropriately recommended as the next management step 48% of ERCPs incorrectly rejected by ESGE guidelines. Conclusions A machine learning-based tool was created, providing real-time, personalized, objective probability of choledocholithiasis and ERCP recommendations. This more accurately directed ERCP use than existing ASGE and ESGE guidelines, and has the potential to reduce morbidity associated with ERCP or missed choledocholithiasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉松完成签到,获得积分20
刚刚
刚刚
1秒前
liuhang发布了新的文献求助10
3秒前
李英俊完成签到,获得积分10
3秒前
科研通AI5应助科研汪星人采纳,获得10
4秒前
章建完成签到 ,获得积分10
4秒前
4秒前
苻沛蓝发布了新的文献求助10
6秒前
仙八完成签到 ,获得积分10
6秒前
炫炫炫发布了新的文献求助10
7秒前
一与余完成签到,获得积分10
7秒前
你曾是少年完成签到,获得积分10
8秒前
8秒前
科研通AI5应助刻苦秋烟采纳,获得10
9秒前
liuhang完成签到,获得积分10
10秒前
11秒前
妩媚的尔阳完成签到,获得积分10
13秒前
千羽发布了新的文献求助10
13秒前
大力松鼠完成签到,获得积分10
14秒前
15秒前
17秒前
CC发布了新的文献求助10
17秒前
17秒前
科研通AI6应助炫炫炫采纳,获得30
18秒前
苻沛蓝完成签到,获得积分10
18秒前
19秒前
大力松鼠发布了新的文献求助10
19秒前
微风418完成签到,获得积分10
19秒前
SciGPT应助爱丽丝敏采纳,获得10
20秒前
MargeryMay完成签到,获得积分10
20秒前
Shi完成签到,获得积分20
21秒前
21秒前
猪猪hero发布了新的文献求助10
22秒前
科研通AI2S应助跨越者采纳,获得10
23秒前
Jasper应助千羽采纳,获得10
23秒前
23秒前
周某某发布了新的文献求助10
23秒前
领导范儿应助houchengru采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558132
求助须知:如何正确求助?哪些是违规求助? 3985167
关于积分的说明 12338126
捐赠科研通 3655613
什么是DOI,文献DOI怎么找? 2013865
邀请新用户注册赠送积分活动 1048752
科研通“疑难数据库(出版商)”最低求助积分说明 937121