A machine learning-based choledocholithiasis prediction tool to improve ERCP decision making: a proof-of-concept study

医学 内镜逆行胰胆管造影术 接收机工作特性 模式 机器学习 Boosting(机器学习) 内窥镜检查 危险分层 队列 人工智能 医学物理学 放射科 外科 内科学 胰腺炎 计算机科学 社会科学 社会学
作者
Steven N. Steinway,Bo‐Hao Tang,Brian Caffo,Venkata S. Akshintala,Jeremy Telezing,Aditya Ashok,Ayesha Kamal,Chung Yao Yu,Nitin Jagtap,James Buxbaum,Joseph Elmunzer,Sachin Wani,Mouen A. Khashab
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:56 (03): 165-171 被引量:7
标识
DOI:10.1055/a-2174-0534
摘要

Abstract Background Previous studies demonstrated limited accuracy of existing guidelines for predicting choledocholithiasis, leading to overutilization of endoscopic retrograde cholangiopancreatography (ERCP). More accurate stratification may improve patient selection for ERCP and allow use of lower-risk modalities. Methods A machine learning model was developed using patient information from two published cohort studies that evaluated performance of guidelines in predicting choledocholithiasis. Prediction models were developed using the gradient boosting model (GBM) machine learning method. GBM performance was evaluated using 10-fold cross-validation and area under the receiver operating characteristic curve (AUC). Important predictors of choledocholithiasis were identified based on relative importance in the GBM. Results 1378 patients (mean age 43.3 years; 61.2% female) were included in the GBM and 59.4% had choledocholithiasis. Eight variables were identified as predictors of choledocholithiasis. The GBM had accuracy of 71.5% (SD 2.5%) (AUC 0.79 [SD 0.06]) and performed better than the 2019 American Society for Gastrointestinal Endoscopy (ASGE) guidelines (accuracy 62.4% [SD 2.6%]; AUC 0.63 [SD 0.03]) and European Society of Gastrointestinal Endoscopy (ESGE) guidelines (accuracy 62.8% [SD 2.6%]; AUC 0.67 [SD 0.02]). The GBM correctly categorized 22% of patients directed to unnecessary ERCP by ASGE guidelines, and appropriately recommended as the next management step 48% of ERCPs incorrectly rejected by ESGE guidelines. Conclusions A machine learning-based tool was created, providing real-time, personalized, objective probability of choledocholithiasis and ERCP recommendations. This more accurately directed ERCP use than existing ASGE and ESGE guidelines, and has the potential to reduce morbidity associated with ERCP or missed choledocholithiasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
激情的代曼完成签到,获得积分10
1秒前
西哥发布了新的文献求助10
1秒前
1秒前
浮游应助zihaolee采纳,获得10
1秒前
2秒前
3秒前
上官若男应助美满向薇采纳,获得10
4秒前
4秒前
4秒前
5秒前
高兴的幻竹完成签到,获得积分10
5秒前
魏冉完成签到,获得积分10
5秒前
6秒前
铱铂发布了新的文献求助10
6秒前
宫阙发布了新的文献求助10
6秒前
在水一方应助yangmi采纳,获得10
6秒前
齐甲雯发布了新的文献求助30
6秒前
粥粥发布了新的文献求助10
7秒前
vetXue完成签到,获得积分10
7秒前
诸葛藏藏完成签到,获得积分10
7秒前
鱼鱼鱼发布了新的文献求助10
7秒前
深情安青应助drleslie采纳,获得30
8秒前
坐忘道完成签到 ,获得积分10
8秒前
8秒前
菜菜发布了新的文献求助20
8秒前
zxzxzz发布了新的文献求助10
9秒前
Li完成签到,获得积分10
10秒前
10秒前
俏皮的芝麻完成签到,获得积分10
11秒前
领导范儿应助LL采纳,获得10
11秒前
浮游应助powerfuled采纳,获得10
12秒前
丘比特应助supin采纳,获得10
12秒前
小二郎应助铱铂采纳,获得10
13秒前
13秒前
Cardy发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助50
13秒前
粥粥完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884869
求助须知:如何正确求助?哪些是违规求助? 4169926
关于积分的说明 12939631
捐赠科研通 3930555
什么是DOI,文献DOI怎么找? 2156644
邀请新用户注册赠送积分活动 1175079
关于科研通互助平台的介绍 1079700