A machine learning-based choledocholithiasis prediction tool to improve ERCP decision making: a proof-of-concept study

医学 内镜逆行胰胆管造影术 接收机工作特性 模式 机器学习 Boosting(机器学习) 内窥镜检查 危险分层 队列 人工智能 医学物理学 放射科 外科 内科学 胰腺炎 计算机科学 社会科学 社会学
作者
Steven N. Steinway,Bo‐Hao Tang,Brian Caffo,Venkata S. Akshintala,Jeremy Telezing,Aditya Ashok,Ayesha Kamal,Chung Yao Yu,Nitin Jagtap,James Buxbaum,Joseph Elmunzer,Sachin Wani,Mouen A. Khashab
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:56 (03): 165-171 被引量:12
标识
DOI:10.1055/a-2174-0534
摘要

Abstract Background Previous studies demonstrated limited accuracy of existing guidelines for predicting choledocholithiasis, leading to overutilization of endoscopic retrograde cholangiopancreatography (ERCP). More accurate stratification may improve patient selection for ERCP and allow use of lower-risk modalities. Methods A machine learning model was developed using patient information from two published cohort studies that evaluated performance of guidelines in predicting choledocholithiasis. Prediction models were developed using the gradient boosting model (GBM) machine learning method. GBM performance was evaluated using 10-fold cross-validation and area under the receiver operating characteristic curve (AUC). Important predictors of choledocholithiasis were identified based on relative importance in the GBM. Results 1378 patients (mean age 43.3 years; 61.2% female) were included in the GBM and 59.4% had choledocholithiasis. Eight variables were identified as predictors of choledocholithiasis. The GBM had accuracy of 71.5% (SD 2.5%) (AUC 0.79 [SD 0.06]) and performed better than the 2019 American Society for Gastrointestinal Endoscopy (ASGE) guidelines (accuracy 62.4% [SD 2.6%]; AUC 0.63 [SD 0.03]) and European Society of Gastrointestinal Endoscopy (ESGE) guidelines (accuracy 62.8% [SD 2.6%]; AUC 0.67 [SD 0.02]). The GBM correctly categorized 22% of patients directed to unnecessary ERCP by ASGE guidelines, and appropriately recommended as the next management step 48% of ERCPs incorrectly rejected by ESGE guidelines. Conclusions A machine learning-based tool was created, providing real-time, personalized, objective probability of choledocholithiasis and ERCP recommendations. This more accurately directed ERCP use than existing ASGE and ESGE guidelines, and has the potential to reduce morbidity associated with ERCP or missed choledocholithiasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大个应助清爽的板凳采纳,获得10
1秒前
2秒前
2秒前
2秒前
3秒前
万能图书馆应助小废物采纳,获得10
3秒前
李爱国应助健壮的面包采纳,获得10
4秒前
4秒前
5秒前
Xingkun_li发布了新的文献求助10
6秒前
漂亮巧荷完成签到,获得积分20
6秒前
6秒前
大马甲发布了新的文献求助10
7秒前
Tiffany发布了新的文献求助10
8秒前
WWXWWX发布了新的文献求助10
8秒前
9秒前
Betterscience关注了科研通微信公众号
9秒前
王滕发布了新的文献求助10
9秒前
冰姗发布了新的文献求助10
11秒前
13秒前
14秒前
漂亮巧荷发布了新的文献求助20
14秒前
Efan给Efan的求助进行了留言
14秒前
14秒前
彭于彦祖应助郁浅采纳,获得100
15秒前
小猫咪完成签到,获得积分10
15秒前
愉快涵菱完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
每天都在掉头发完成签到,获得积分10
17秒前
坚定的莹完成签到,获得积分10
17秒前
科研大狗发布了新的文献求助10
18秒前
18秒前
18秒前
浮游应助王滕采纳,获得10
19秒前
20秒前
英姑应助WWXWWX采纳,获得10
20秒前
隐形曼青应助赫连烙采纳,获得10
22秒前
renwoxing发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507123
求助须知:如何正确求助?哪些是违规求助? 4602518
关于积分的说明 14481925
捐赠科研通 4536520
什么是DOI,文献DOI怎么找? 2486226
邀请新用户注册赠送积分活动 1468816
关于科研通互助平台的介绍 1441292