A machine learning-based choledocholithiasis prediction tool to improve ERCP decision making: a proof-of-concept study

医学 内镜逆行胰胆管造影术 接收机工作特性 模式 机器学习 Boosting(机器学习) 内窥镜检查 危险分层 队列 人工智能 医学物理学 放射科 外科 内科学 胰腺炎 计算机科学 社会科学 社会学
作者
Steven N. Steinway,Bo‐Hao Tang,Brian Caffo,Venkata S. Akshintala,Jeremy Telezing,Aditya Ashok,Ayesha Kamal,Chung Yao Yu,Nitin Jagtap,James Buxbaum,Joseph Elmunzer,Sachin Wani,Mouen A. Khashab
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:56 (03): 165-171 被引量:7
标识
DOI:10.1055/a-2174-0534
摘要

Abstract Background Previous studies demonstrated limited accuracy of existing guidelines for predicting choledocholithiasis, leading to overutilization of endoscopic retrograde cholangiopancreatography (ERCP). More accurate stratification may improve patient selection for ERCP and allow use of lower-risk modalities. Methods A machine learning model was developed using patient information from two published cohort studies that evaluated performance of guidelines in predicting choledocholithiasis. Prediction models were developed using the gradient boosting model (GBM) machine learning method. GBM performance was evaluated using 10-fold cross-validation and area under the receiver operating characteristic curve (AUC). Important predictors of choledocholithiasis were identified based on relative importance in the GBM. Results 1378 patients (mean age 43.3 years; 61.2% female) were included in the GBM and 59.4% had choledocholithiasis. Eight variables were identified as predictors of choledocholithiasis. The GBM had accuracy of 71.5% (SD 2.5%) (AUC 0.79 [SD 0.06]) and performed better than the 2019 American Society for Gastrointestinal Endoscopy (ASGE) guidelines (accuracy 62.4% [SD 2.6%]; AUC 0.63 [SD 0.03]) and European Society of Gastrointestinal Endoscopy (ESGE) guidelines (accuracy 62.8% [SD 2.6%]; AUC 0.67 [SD 0.02]). The GBM correctly categorized 22% of patients directed to unnecessary ERCP by ASGE guidelines, and appropriately recommended as the next management step 48% of ERCPs incorrectly rejected by ESGE guidelines. Conclusions A machine learning-based tool was created, providing real-time, personalized, objective probability of choledocholithiasis and ERCP recommendations. This more accurately directed ERCP use than existing ASGE and ESGE guidelines, and has the potential to reduce morbidity associated with ERCP or missed choledocholithiasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
徐炎完成签到,获得积分10
2秒前
2秒前
wiken发布了新的文献求助30
2秒前
匪石发布了新的文献求助10
3秒前
把拼好的饭给你完成签到,获得积分10
3秒前
3秒前
搜集达人应助草人乙采纳,获得10
4秒前
Ambitious完成签到,获得积分10
4秒前
陈星完成签到,获得积分10
4秒前
绿狗玩偶发布了新的文献求助10
7秒前
自然卷发布了新的文献求助30
7秒前
李健的小迷弟应助yy采纳,获得10
8秒前
英俊的铭应助小巧寻桃采纳,获得10
8秒前
科研通AI2S应助stt采纳,获得10
9秒前
123完成签到 ,获得积分10
12秒前
坚定的泥猴桃完成签到 ,获得积分10
13秒前
13秒前
同學你該吃藥了完成签到 ,获得积分10
13秒前
14秒前
14秒前
14秒前
16秒前
xvping完成签到,获得积分10
16秒前
17秒前
斯文败类应助闪闪落雁采纳,获得10
17秒前
17秒前
朴素炎彬完成签到,获得积分20
18秒前
汉堡包应助兀那狗子别跑采纳,获得10
18秒前
执着冷雁发布了新的文献求助10
19秒前
syp发布了新的文献求助10
20秒前
泡泡完成签到 ,获得积分10
20秒前
20秒前
orixero应助唐tang采纳,获得10
21秒前
含蓄的敏发布了新的文献求助10
21秒前
充电宝应助发文章12138采纳,获得10
21秒前
xiaoxiao发布了新的文献求助10
21秒前
包容煎饼发布了新的文献求助10
22秒前
卷王完成签到,获得积分10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962