已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Data-driven Approach for the Identification of Features for Automated Feedback on Academic Essays

WordNet公司 过度拟合 计算机科学 人工智能 卡帕 自然语言处理 可靠性(半导体) 符号 机器学习 人工神经网络 数学 算术 几何学 量子力学 物理 功率(物理)
作者
Mohsin Abbas,Peter van Rosmalen,Marco Kalz
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:16 (6): 914-925 被引量:1
标识
DOI:10.1109/tlt.2023.3320877
摘要

For predicting and improving the quality of essays, text analytic metrics (surface, syntactic, morphological and semantic features) can be used to provide formative feedback to the students in higher education. In this study, the goal was to identify a sufficient number of features that exhibit a fair proxy of the scores given by the human raters via a data-driven approach. Using an existing corpus and a text analysis tool for the Dutch language, a large number of features were extracted. Artificial neural networks, Levenberg Marquardt algorithm and backward elimination were used to reduce the number of features automatically. Irrelevant features were eliminated based on the inter-rater agreement between predicted and human scores calculated using Cohen's Kappa ( $\kappa$ ). The number of features in this study was reduced from 457 to 28 and grouped into different categories. The results reported in this paper are an improvement over a similar previous study. Firstly, the inter-rater reliability between the predicted scores and human raters was increased by tweaking the corpus for overfitting for average scores. The resulting maximum value of $\kappa$ showed substantial agreement compared to moderate inter-rater reliability in the prior study. Secondly, instead of using a dedicated training and test set, the training and testing phases in the new experiments were performed using k-fold cross validation on the corpus of texts. The approach presented in this research paper is the first step towards our ultimate goal of providing meaningful formative feedback to the students for enhancing their writing skills and capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SemiConduAG发布了新的文献求助10
4秒前
故意的问安完成签到 ,获得积分10
5秒前
努力加油煤老八完成签到 ,获得积分10
6秒前
棠真完成签到 ,获得积分10
7秒前
9秒前
科研通AI2S应助呃呃呃采纳,获得10
9秒前
你你完成签到,获得积分10
9秒前
10秒前
FashionBoy应助888886kn采纳,获得10
11秒前
qdsj2033完成签到 ,获得积分10
11秒前
童翰完成签到,获得积分10
12秒前
无极2023完成签到 ,获得积分10
12秒前
bluei完成签到 ,获得积分10
13秒前
兰亭序发布了新的文献求助10
14秒前
SemiConduAG完成签到,获得积分10
15秒前
bkagyin应助ZengJuan采纳,获得10
15秒前
MQ&FF完成签到,获得积分0
15秒前
且从容完成签到,获得积分10
17秒前
19秒前
19秒前
wy完成签到 ,获得积分10
21秒前
22秒前
Yakamoz发布了新的文献求助30
22秒前
橙子味的邱憨憨完成签到 ,获得积分10
24秒前
888886kn发布了新的文献求助10
24秒前
df发布了新的文献求助10
24秒前
26秒前
shame完成签到 ,获得积分10
27秒前
28秒前
小马甲应助包包包采纳,获得10
29秒前
30秒前
酷波er应助Huong采纳,获得10
30秒前
爱静静完成签到,获得积分0
31秒前
TL完成签到,获得积分10
34秒前
王者归来完成签到,获得积分10
35秒前
无花果应助cy采纳,获得10
35秒前
可久斯基完成签到 ,获得积分10
38秒前
实验耗材完成签到 ,获得积分10
39秒前
41秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422795
求助须知:如何正确求助?哪些是违规求助? 3023130
关于积分的说明 8903543
捐赠科研通 2710509
什么是DOI,文献DOI怎么找? 1486531
科研通“疑难数据库(出版商)”最低求助积分说明 687093
邀请新用户注册赠送积分活动 682312