亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Data-driven Approach for the Identification of Features for Automated Feedback on Academic Essays

WordNet公司 过度拟合 计算机科学 人工智能 卡帕 自然语言处理 可靠性(半导体) 符号 机器学习 人工神经网络 数学 算术 功率(物理) 物理 几何学 量子力学
作者
Mohsin Abbas,Peter van Rosmalen,Marco Kalz
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:16 (6): 914-925 被引量:1
标识
DOI:10.1109/tlt.2023.3320877
摘要

For predicting and improving the quality of essays, text analytic metrics (surface, syntactic, morphological and semantic features) can be used to provide formative feedback to the students in higher education. In this study, the goal was to identify a sufficient number of features that exhibit a fair proxy of the scores given by the human raters via a data-driven approach. Using an existing corpus and a text analysis tool for the Dutch language, a large number of features were extracted. Artificial neural networks, Levenberg Marquardt algorithm and backward elimination were used to reduce the number of features automatically. Irrelevant features were eliminated based on the inter-rater agreement between predicted and human scores calculated using Cohen's Kappa ( $\kappa$ ). The number of features in this study was reduced from 457 to 28 and grouped into different categories. The results reported in this paper are an improvement over a similar previous study. Firstly, the inter-rater reliability between the predicted scores and human raters was increased by tweaking the corpus for overfitting for average scores. The resulting maximum value of $\kappa$ showed substantial agreement compared to moderate inter-rater reliability in the prior study. Secondly, instead of using a dedicated training and test set, the training and testing phases in the new experiments were performed using k-fold cross validation on the corpus of texts. The approach presented in this research paper is the first step towards our ultimate goal of providing meaningful formative feedback to the students for enhancing their writing skills and capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪仔5号发布了新的文献求助10
28秒前
1分钟前
2分钟前
3分钟前
一二三四发布了新的文献求助10
3分钟前
4分钟前
一二三四完成签到,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得30
5分钟前
6分钟前
金光一闪发布了新的文献求助10
6分钟前
金光一闪完成签到,获得积分10
6分钟前
6分钟前
爱静静应助乔威采纳,获得10
7分钟前
7分钟前
笔墨纸砚完成签到 ,获得积分10
7分钟前
7分钟前
田様应助Alice采纳,获得10
8分钟前
8分钟前
8分钟前
cc发布了新的文献求助10
8分钟前
浮游应助cc采纳,获得10
8分钟前
FashionBoy应助cc采纳,获得10
9分钟前
尼古丁的味道完成签到 ,获得积分10
9分钟前
余呀余完成签到 ,获得积分10
9分钟前
cc完成签到,获得积分10
9分钟前
鳄鱼不做饿梦完成签到,获得积分10
10分钟前
10分钟前
fangjc1024发布了新的文献求助10
10分钟前
10分钟前
Mcling完成签到,获得积分10
10分钟前
fangjc1024完成签到,获得积分10
10分钟前
11分钟前
旁边有堵墙完成签到 ,获得积分20
11分钟前
mc完成签到,获得积分10
11分钟前
11分钟前
orangel发布了新的文献求助10
11分钟前
林林林完成签到,获得积分10
11分钟前
大鼻子的新四岁完成签到,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302846
求助须知:如何正确求助?哪些是违规求助? 4449882
关于积分的说明 13848728
捐赠科研通 4336199
什么是DOI,文献DOI怎么找? 2380825
邀请新用户注册赠送积分活动 1375769
关于科研通互助平台的介绍 1342143