清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Data-driven Approach for the Identification of Features for Automated Feedback on Academic Essays

WordNet公司 过度拟合 计算机科学 人工智能 卡帕 自然语言处理 可靠性(半导体) 符号 机器学习 人工神经网络 数学 算术 功率(物理) 物理 几何学 量子力学
作者
Mohsin Abbas,Peter van Rosmalen,Marco Kalz
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:16 (6): 914-925 被引量:1
标识
DOI:10.1109/tlt.2023.3320877
摘要

For predicting and improving the quality of essays, text analytic metrics (surface, syntactic, morphological and semantic features) can be used to provide formative feedback to the students in higher education. In this study, the goal was to identify a sufficient number of features that exhibit a fair proxy of the scores given by the human raters via a data-driven approach. Using an existing corpus and a text analysis tool for the Dutch language, a large number of features were extracted. Artificial neural networks, Levenberg Marquardt algorithm and backward elimination were used to reduce the number of features automatically. Irrelevant features were eliminated based on the inter-rater agreement between predicted and human scores calculated using Cohen's Kappa ( $\kappa$ ). The number of features in this study was reduced from 457 to 28 and grouped into different categories. The results reported in this paper are an improvement over a similar previous study. Firstly, the inter-rater reliability between the predicted scores and human raters was increased by tweaking the corpus for overfitting for average scores. The resulting maximum value of $\kappa$ showed substantial agreement compared to moderate inter-rater reliability in the prior study. Secondly, instead of using a dedicated training and test set, the training and testing phases in the new experiments were performed using k-fold cross validation on the corpus of texts. The approach presented in this research paper is the first step towards our ultimate goal of providing meaningful formative feedback to the students for enhancing their writing skills and capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
松松完成签到 ,获得积分10
9秒前
13秒前
17秒前
20秒前
XD824发布了新的文献求助10
21秒前
23秒前
如泣草芥完成签到,获得积分0
25秒前
30秒前
40秒前
叁月二完成签到 ,获得积分10
40秒前
45秒前
45秒前
量子星尘发布了新的文献求助10
52秒前
53秒前
苹果完成签到 ,获得积分10
55秒前
1分钟前
郑琦敏钰完成签到 ,获得积分10
1分钟前
1分钟前
立行完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
XD824发布了新的文献求助10
1分钟前
优雅的WAN完成签到 ,获得积分10
1分钟前
1分钟前
热情的橙汁完成签到,获得积分10
1分钟前
1分钟前
个性的紫菜应助hugeyoung采纳,获得30
1分钟前
靓丽宛亦完成签到 ,获得积分10
1分钟前
hugeyoung完成签到,获得积分10
1分钟前
1分钟前
萝卜猪完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Wen完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596743
求助须知:如何正确求助?哪些是违规求助? 4008546
关于积分的说明 12409321
捐赠科研通 3687625
什么是DOI,文献DOI怎么找? 2032568
邀请新用户注册赠送积分活动 1065806
科研通“疑难数据库(出版商)”最低求助积分说明 951098