基因敲除
上皮-间质转换
转化生长因子
化学
癌症研究
增生
前列腺
下调和上调
细胞生物学
分子生物学
内分泌学
内科学
生物
医学
生物化学
基因
癌症
作者
Shiyu Tong,Miao Mo,Xiheng Hu,Longxiang Wu,Minfeng Chen,Zhao Cheng
摘要
Benign prostate hyperplasia (BPH) is the most commonly seen disease among aging males. Transforming growth factor(TGF)-β-mediated epithelial-mesenchymal transition (EMT) and epithelial overproliferation might be central events in BPH etiology and pathophysiology. In the present study, long noncoding RNA MIR663AHG, miR-765, and FOXK1 formed a competing endogenous RNAs network, modulating TGF-β-mediated EMT and epithelial overproliferation in BPH-1 cells. miR-765 expression was downregulated in TGF-β-stimulated BPH-1 cells; miR-765 overexpression ameliorated TGF-β-mediated EMT and epithelial overproliferation in BPH-1 cells. MIR663AHG directly targeted miR-765 and negatively regulated miR-765; MIR663AHG knockdown also attenuated TGF-β-induced EMT and epithelial overproliferation in BPH-1 cells, whereas miR-765 inhibition attenuated MIR663AHG knockdown effects on TGF-β-stimulated BPH-1 cells. miR-765 directly targeted FOXK1 and negatively regulated FOXK1. FOXK1 knockdown attenuated TGF-β-induced EMT and epithelial overproliferation and promoted autophagy in BPH-1 cells, and partially attenuated miR-765 inhibition effects on TGF-β-stimulated BPH-1 cells. In conclusion, this study provides a MIR663AHG/miR-765/FOXK1 axis modulating TGF-β-induced epithelial proliferation and EMT, which might exert an underlying effect on BPH development and act as therapeutic targets for BPH treatment regimens.
科研通智能强力驱动
Strongly Powered by AbleSci AI