亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nascent transcriptome reveals orchestration of zygotic genome activation in early embryogenesis

母子转换 生物 转录组 编配 基因组 基因 计算生物学 遗传学 基因表达 细胞生物学 胚胎 进化生物学 胚胎发生 合子 视觉艺术 艺术 音乐剧
作者
H. S. Chen,Matthew C. Good
出处
期刊:Current Biology [Elsevier BV]
卷期号:32 (19): 4314-4324.e7 被引量:4
标识
DOI:10.1016/j.cub.2022.07.078
摘要

•Whole-embryo and regional EU-RNA-seq determines timing and spatial patterns of ZGA •Maternal-zygotic genes dominate transcriptional output during ZGA •Manipulation of translation and cell division reconciles regulatory mechanisms of ZGA •Timing of germ-layer-specific expression appears sequential in the blastula Early embryo development requires maternal-to-zygotic transition, during which transcriptionally silent nuclei begin widespread gene expression during zygotic genome activation (ZGA). 1 Vastenhouw N.L. Cao W.X. Lipshitz H.D. The maternal-to-zygotic transition revisited. Development. 2019; 146: dev161471https://doi.org/10.1242/dev.161471 Crossref PubMed Scopus (112) Google Scholar , 2 Jukam D. Shariati S.A.M. Skotheim J.M. Zygotic genome activation in vertebrates. Dev. Cell. 2017; 42: 316-332https://doi.org/10.1016/j.devcel.2017.07.026 Abstract Full Text Full Text PDF PubMed Scopus (197) Google Scholar , 3 Lee M.T. Bonneau A.R. Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 2014; 30: 581-613https://doi.org/10.1146/annurev-cellbio-100913-013027 Crossref PubMed Scopus (346) Google Scholar ZGA is vital for early cell fating and germ-layer specification, 3 Lee M.T. Bonneau A.R. Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 2014; 30: 581-613https://doi.org/10.1146/annurev-cellbio-100913-013027 Crossref PubMed Scopus (346) Google Scholar ,4 Schulz K.N. Harrison M.M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 2019; 20: 221-234https://doi.org/10.1038/s41576-018-0087-x Crossref PubMed Scopus (175) Google Scholar and ZGA timing is regulated by multiple mechanisms. 1 Vastenhouw N.L. Cao W.X. Lipshitz H.D. The maternal-to-zygotic transition revisited. Development. 2019; 146: dev161471https://doi.org/10.1242/dev.161471 Crossref PubMed Scopus (112) Google Scholar , 2 Jukam D. Shariati S.A.M. Skotheim J.M. Zygotic genome activation in vertebrates. Dev. Cell. 2017; 42: 316-332https://doi.org/10.1016/j.devcel.2017.07.026 Abstract Full Text Full Text PDF PubMed Scopus (197) Google Scholar , 3 Lee M.T. Bonneau A.R. Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 2014; 30: 581-613https://doi.org/10.1146/annurev-cellbio-100913-013027 Crossref PubMed Scopus (346) Google Scholar , 4 Schulz K.N. Harrison M.M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 2019; 20: 221-234https://doi.org/10.1038/s41576-018-0087-x Crossref PubMed Scopus (175) Google Scholar , 5 Pálfy M. Joseph S.R. Vastenhouw N.L. The timing of zygotic genome activation. Curr. Opin. Genet. Dev. 2017; 43: 53-60https://doi.org/10.1016/j.gde.2016.12.001 Crossref PubMed Scopus (39) Google Scholar However, controversies remain about whether these mechanisms are interrelated and vary among species 6 Lu X. Li J.M. Elemento O. Tavazoie S. Wieschaus E.F. Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition. Development. 2009; 136: 2101-2110https://doi.org/10.1242/dev.034421 Crossref PubMed Scopus (83) Google Scholar , 7 Syed S. Wilky H. Raimundo J. Lim B. Amodeo A.A. The nuclear to cytoplasmic ratio directly regulates zygotic transcription in Drosophila through multiple modalities. Proc. Natl. Acad. Sci. USA. 2021; 118 (e2010210118)https://doi.org/10.1073/pnas.2010210118 Crossref Scopus (14) Google Scholar , 8 Strong I.J.T. Lei X. Chen F. Yuan K. O'Farrell P.H. Interphase-arrested Drosophila embryos activate zygotic gene expression and initiate mid-blastula transition events at a low nuclear-cytoplasmic ratio. PLoS Biol. 2020; 18 (e3000891)https://doi.org/10.1371/journal.pbio.3000891 Crossref PubMed Scopus (13) Google Scholar , 9 Edgar B.A. Kiehle C.P. Schubiger G. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell. 1986; 44: 365-372 Abstract Full Text PDF PubMed Scopus (248) Google Scholar , 10 Collart C. Allen G.E. Bradshaw C.R. Smith J.C. Zegerman P. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science. 2013; 341: 893-896https://doi.org/10.1126/science.1241530 Crossref PubMed Scopus (152) Google Scholar and whether the timing of germ-layer-specific gene activation is temporally ordered. 11 Argelaguet R. Clark S.J. Mohammed H. Stapel L.C. Krueger C. Kapourani C.A. Imaz-Rosshandler I. Lohoff T. Xiang Y. Hanna C.W. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature. 2019; 576: 487-491https://doi.org/10.1038/s41586-019-1825-8 Crossref PubMed Scopus (166) Google Scholar ,12 Hashimshony T. Feder M. Levin M. Hall B.K. Yanai I. Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature. 2015; 519: 219-222https://doi.org/10.1038/nature13996 Crossref PubMed Scopus (109) Google Scholar In some embryonic models, widespread ZGA onset is spatiotemporally graded, 13 Chen H. Good M.C. Imaging nascent transcription in wholemount vertebrate embryos to characterize zygotic genome activation. Methods Enzymol. 2020; 638: 139-165https://doi.org/10.1016/bs.mie.2020.03.002 Crossref PubMed Scopus (2) Google Scholar ,14 Chen H. Einstein L.C. Little S.C. Good M.C. Spatiotemporal patterning of zygotic genome activation in a model vertebrate embryo. Dev. Cell. 2019; 49: 852-866.e7https://doi.org/10.1016/j.devcel.2019.05.036 Abstract Full Text Full Text PDF PubMed Scopus (31) Google Scholar yet it is unclear whether the transcriptome follows this pattern. A major challenge in addressing these questions is to accurately measure the timing of each gene activation. Here, we metabolically label and identify the nascent transcriptome using 5-ethynyl uridine (5-EU) in Xenopus blastula embryos. We find that EU-RNA-seq outperforms total RNA-seq in detecting the ZGA transcriptome, which is dominated by transcription from maternal-zygotic genes, enabling improved ZGA timing determination. We uncover discrete spatiotemporal patterns for individual gene activation, a majority following a spatial pattern of ZGA that is correlated with a cell size gradient. 14 Chen H. Einstein L.C. Little S.C. Good M.C. Spatiotemporal patterning of zygotic genome activation in a model vertebrate embryo. Dev. Cell. 2019; 49: 852-866.e7https://doi.org/10.1016/j.devcel.2019.05.036 Abstract Full Text Full Text PDF PubMed Scopus (31) Google Scholar We further reveal that transcription necessitates a period of developmental progression and that ZGA can be precociously induced by cycloheximide, potentially through elongation of interphase. Finally, most ectodermal genes are activated earlier than endodermal genes, suggesting a temporal orchestration of germ-layer-specific genes, potentially linked to the spatially graded pattern of ZGA. Together, our study provides fundamental new insights into the composition and dynamics of the ZGA transcriptome, mechanisms regulating ZGA timing, and its role in the onset of early cell fating. Early embryo development requires maternal-to-zygotic transition, during which transcriptionally silent nuclei begin widespread gene expression during zygotic genome activation (ZGA). 1 Vastenhouw N.L. Cao W.X. Lipshitz H.D. The maternal-to-zygotic transition revisited. Development. 2019; 146: dev161471https://doi.org/10.1242/dev.161471 Crossref PubMed Scopus (112) Google Scholar , 2 Jukam D. Shariati S.A.M. Skotheim J.M. Zygotic genome activation in vertebrates. Dev. Cell. 2017; 42: 316-332https://doi.org/10.1016/j.devcel.2017.07.026 Abstract Full Text Full Text PDF PubMed Scopus (197) Google Scholar , 3 Lee M.T. Bonneau A.R. Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 2014; 30: 581-613https://doi.org/10.1146/annurev-cellbio-100913-013027 Crossref PubMed Scopus (346) Google Scholar ZGA is vital for early cell fating and germ-layer specification, 3 Lee M.T. Bonneau A.R. Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 2014; 30: 581-613https://doi.org/10.1146/annurev-cellbio-100913-013027 Crossref PubMed Scopus (346) Google Scholar ,4 Schulz K.N. Harrison M.M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 2019; 20: 221-234https://doi.org/10.1038/s41576-018-0087-x Crossref PubMed Scopus (175) Google Scholar and ZGA timing is regulated by multiple mechanisms. 1 Vastenhouw N.L. Cao W.X. Lipshitz H.D. The maternal-to-zygotic transition revisited. Development. 2019; 146: dev161471https://doi.org/10.1242/dev.161471 Crossref PubMed Scopus (112) Google Scholar , 2 Jukam D. Shariati S.A.M. Skotheim J.M. Zygotic genome activation in vertebrates. Dev. Cell. 2017; 42: 316-332https://doi.org/10.1016/j.devcel.2017.07.026 Abstract Full Text Full Text PDF PubMed Scopus (197) Google Scholar , 3 Lee M.T. Bonneau A.R. Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 2014; 30: 581-613https://doi.org/10.1146/annurev-cellbio-100913-013027 Crossref PubMed Scopus (346) Google Scholar , 4 Schulz K.N. Harrison M.M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 2019; 20: 221-234https://doi.org/10.1038/s41576-018-0087-x Crossref PubMed Scopus (175) Google Scholar , 5 Pálfy M. Joseph S.R. Vastenhouw N.L. The timing of zygotic genome activation. Curr. Opin. Genet. Dev. 2017; 43: 53-60https://doi.org/10.1016/j.gde.2016.12.001 Crossref PubMed Scopus (39) Google Scholar However, controversies remain about whether these mechanisms are interrelated and vary among species 6 Lu X. Li J.M. Elemento O. Tavazoie S. Wieschaus E.F. Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition. Development. 2009; 136: 2101-2110https://doi.org/10.1242/dev.034421 Crossref PubMed Scopus (83) Google Scholar , 7 Syed S. Wilky H. Raimundo J. Lim B. Amodeo A.A. The nuclear to cytoplasmic ratio directly regulates zygotic transcription in Drosophila through multiple modalities. Proc. Natl. Acad. Sci. USA. 2021; 118 (e2010210118)https://doi.org/10.1073/pnas.2010210118 Crossref Scopus (14) Google Scholar , 8 Strong I.J.T. Lei X. Chen F. Yuan K. O'Farrell P.H. Interphase-arrested Drosophila embryos activate zygotic gene expression and initiate mid-blastula transition events at a low nuclear-cytoplasmic ratio. PLoS Biol. 2020; 18 (e3000891)https://doi.org/10.1371/journal.pbio.3000891 Crossref PubMed Scopus (13) Google Scholar , 9 Edgar B.A. Kiehle C.P. Schubiger G. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell. 1986; 44: 365-372 Abstract Full Text PDF PubMed Scopus (248) Google Scholar , 10 Collart C. Allen G.E. Bradshaw C.R. Smith J.C. Zegerman P. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science. 2013; 341: 893-896https://doi.org/10.1126/science.1241530 Crossref PubMed Scopus (152) Google Scholar and whether the timing of germ-layer-specific gene activation is temporally ordered. 11 Argelaguet R. Clark S.J. Mohammed H. Stapel L.C. Krueger C. Kapourani C.A. Imaz-Rosshandler I. Lohoff T. Xiang Y. Hanna C.W. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature. 2019; 576: 487-491https://doi.org/10.1038/s41586-019-1825-8 Crossref PubMed Scopus (166) Google Scholar ,12 Hashimshony T. Feder M. Levin M. Hall B.K. Yanai I. Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature. 2015; 519: 219-222https://doi.org/10.1038/nature13996 Crossref PubMed Scopus (109) Google Scholar In some embryonic models, widespread ZGA onset is spatiotemporally graded, 13 Chen H. Good M.C. Imaging nascent transcription in wholemount vertebrate embryos to characterize zygotic genome activation. Methods Enzymol. 2020; 638: 139-165https://doi.org/10.1016/bs.mie.2020.03.002 Crossref PubMed Scopus (2) Google Scholar ,14 Chen H. Einstein L.C. Little S.C. Good M.C. Spatiotemporal patterning of zygotic genome activation in a model vertebrate embryo. Dev. Cell. 2019; 49: 852-866.e7https://doi.org/10.1016/j.devcel.2019.05.036 Abstract Full Text Full Text PDF PubMed Scopus (31) Google Scholar yet it is unclear whether the transcriptome follows this pattern. A major challenge in addressing these questions is to accurately measure the timing of each gene activation. Here, we metabolically label and identify the nascent transcriptome using 5-ethynyl uridine (5-EU) in Xenopus blastula embryos. We find that EU-RNA-seq outperforms total RNA-seq in detecting the ZGA transcriptome, which is dominated by transcription from maternal-zygotic genes, enabling improved ZGA timing determination. We uncover discrete spatiotemporal patterns for individual gene activation, a majority following a spatial pattern of ZGA that is correlated with a cell size gradient. 14 Chen H. Einstein L.C. Little S.C. Good M.C. Spatiotemporal patterning of zygotic genome activation in a model vertebrate embryo. Dev. Cell. 2019; 49: 852-866.e7https://doi.org/10.1016/j.devcel.2019.05.036 Abstract Full Text Full Text PDF PubMed Scopus (31) Google Scholar We further reveal that transcription necessitates a period of developmental progression and that ZGA can be precociously induced by cycloheximide, potentially through elongation of interphase. Finally, most ectodermal genes are activated earlier than endodermal genes, suggesting a temporal orchestration of germ-layer-specific genes, potentially linked to the spatially graded pattern of ZGA. Together, our study provides fundamental new insights into the composition and dynamics of the ZGA transcriptome, mechanisms regulating ZGA timing, and its role in the onset of early cell fating.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊啊发布了新的文献求助10
3秒前
28秒前
Virtual应助科研通管家采纳,获得20
30秒前
小周完成签到 ,获得积分10
31秒前
1分钟前
梦想家完成签到,获得积分10
1分钟前
1分钟前
story发布了新的文献求助10
1分钟前
科研通AI2S应助story采纳,获得10
2分钟前
2分钟前
鉴定为学计算学的完成签到,获得积分10
2分钟前
熊啊发布了新的文献求助10
2分钟前
Kevin完成签到,获得积分10
3分钟前
sci2025opt完成签到 ,获得积分10
3分钟前
3分钟前
李健应助鸡蛋黄采纳,获得10
3分钟前
3分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
3分钟前
鸡蛋黄发布了新的文献求助10
4分钟前
完美世界应助眼睛大智宸采纳,获得10
4分钟前
市政的艺术家完成签到,获得积分10
4分钟前
Virtual应助科研通管家采纳,获得20
4分钟前
JamesPei应助市政的艺术家采纳,获得20
4分钟前
lod完成签到,获得积分10
4分钟前
5分钟前
淡淡醉波wuliao完成签到 ,获得积分0
5分钟前
可可完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
熊啊发布了新的文献求助10
6分钟前
lj发布了新的文献求助10
6分钟前
Ava应助krajicek采纳,获得10
6分钟前
NexusExplorer应助熊啊采纳,获得10
6分钟前
lj完成签到,获得积分10
6分钟前
6分钟前
krajicek发布了新的文献求助10
6分钟前
排骨大王完成签到,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568949
求助须知:如何正确求助?哪些是违规求助? 3991291
关于积分的说明 12355635
捐赠科研通 3663460
什么是DOI,文献DOI怎么找? 2018921
邀请新用户注册赠送积分活动 1053332
科研通“疑难数据库(出版商)”最低求助积分说明 940877