Nascent transcriptome reveals orchestration of zygotic genome activation in early embryogenesis

母子转换 生物 转录组 编配 基因组 基因 计算生物学 遗传学 基因表达 细胞生物学 胚胎 进化生物学 胚胎发生 合子 视觉艺术 艺术 音乐剧
作者
H. S. Chen,Matthew C. Good
出处
期刊:Current Biology [Elsevier BV]
卷期号:32 (19): 4314-4324.e7 被引量:4
标识
DOI:10.1016/j.cub.2022.07.078
摘要

•Whole-embryo and regional EU-RNA-seq determines timing and spatial patterns of ZGA •Maternal-zygotic genes dominate transcriptional output during ZGA •Manipulation of translation and cell division reconciles regulatory mechanisms of ZGA •Timing of germ-layer-specific expression appears sequential in the blastula Early embryo development requires maternal-to-zygotic transition, during which transcriptionally silent nuclei begin widespread gene expression during zygotic genome activation (ZGA). 1 Vastenhouw N.L. Cao W.X. Lipshitz H.D. The maternal-to-zygotic transition revisited. Development. 2019; 146: dev161471https://doi.org/10.1242/dev.161471 Crossref PubMed Scopus (112) Google Scholar , 2 Jukam D. Shariati S.A.M. Skotheim J.M. Zygotic genome activation in vertebrates. Dev. Cell. 2017; 42: 316-332https://doi.org/10.1016/j.devcel.2017.07.026 Abstract Full Text Full Text PDF PubMed Scopus (197) Google Scholar , 3 Lee M.T. Bonneau A.R. Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 2014; 30: 581-613https://doi.org/10.1146/annurev-cellbio-100913-013027 Crossref PubMed Scopus (346) Google Scholar ZGA is vital for early cell fating and germ-layer specification, 3 Lee M.T. Bonneau A.R. Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 2014; 30: 581-613https://doi.org/10.1146/annurev-cellbio-100913-013027 Crossref PubMed Scopus (346) Google Scholar ,4 Schulz K.N. Harrison M.M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 2019; 20: 221-234https://doi.org/10.1038/s41576-018-0087-x Crossref PubMed Scopus (175) Google Scholar and ZGA timing is regulated by multiple mechanisms. 1 Vastenhouw N.L. Cao W.X. Lipshitz H.D. The maternal-to-zygotic transition revisited. Development. 2019; 146: dev161471https://doi.org/10.1242/dev.161471 Crossref PubMed Scopus (112) Google Scholar , 2 Jukam D. Shariati S.A.M. Skotheim J.M. Zygotic genome activation in vertebrates. Dev. Cell. 2017; 42: 316-332https://doi.org/10.1016/j.devcel.2017.07.026 Abstract Full Text Full Text PDF PubMed Scopus (197) Google Scholar , 3 Lee M.T. Bonneau A.R. Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 2014; 30: 581-613https://doi.org/10.1146/annurev-cellbio-100913-013027 Crossref PubMed Scopus (346) Google Scholar , 4 Schulz K.N. Harrison M.M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 2019; 20: 221-234https://doi.org/10.1038/s41576-018-0087-x Crossref PubMed Scopus (175) Google Scholar , 5 Pálfy M. Joseph S.R. Vastenhouw N.L. The timing of zygotic genome activation. Curr. Opin. Genet. Dev. 2017; 43: 53-60https://doi.org/10.1016/j.gde.2016.12.001 Crossref PubMed Scopus (39) Google Scholar However, controversies remain about whether these mechanisms are interrelated and vary among species 6 Lu X. Li J.M. Elemento O. Tavazoie S. Wieschaus E.F. Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition. Development. 2009; 136: 2101-2110https://doi.org/10.1242/dev.034421 Crossref PubMed Scopus (83) Google Scholar , 7 Syed S. Wilky H. Raimundo J. Lim B. Amodeo A.A. The nuclear to cytoplasmic ratio directly regulates zygotic transcription in Drosophila through multiple modalities. Proc. Natl. Acad. Sci. USA. 2021; 118 (e2010210118)https://doi.org/10.1073/pnas.2010210118 Crossref Scopus (14) Google Scholar , 8 Strong I.J.T. Lei X. Chen F. Yuan K. O'Farrell P.H. Interphase-arrested Drosophila embryos activate zygotic gene expression and initiate mid-blastula transition events at a low nuclear-cytoplasmic ratio. PLoS Biol. 2020; 18 (e3000891)https://doi.org/10.1371/journal.pbio.3000891 Crossref PubMed Scopus (13) Google Scholar , 9 Edgar B.A. Kiehle C.P. Schubiger G. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell. 1986; 44: 365-372 Abstract Full Text PDF PubMed Scopus (248) Google Scholar , 10 Collart C. Allen G.E. Bradshaw C.R. Smith J.C. Zegerman P. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science. 2013; 341: 893-896https://doi.org/10.1126/science.1241530 Crossref PubMed Scopus (152) Google Scholar and whether the timing of germ-layer-specific gene activation is temporally ordered. 11 Argelaguet R. Clark S.J. Mohammed H. Stapel L.C. Krueger C. Kapourani C.A. Imaz-Rosshandler I. Lohoff T. Xiang Y. Hanna C.W. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature. 2019; 576: 487-491https://doi.org/10.1038/s41586-019-1825-8 Crossref PubMed Scopus (166) Google Scholar ,12 Hashimshony T. Feder M. Levin M. Hall B.K. Yanai I. Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature. 2015; 519: 219-222https://doi.org/10.1038/nature13996 Crossref PubMed Scopus (109) Google Scholar In some embryonic models, widespread ZGA onset is spatiotemporally graded, 13 Chen H. Good M.C. Imaging nascent transcription in wholemount vertebrate embryos to characterize zygotic genome activation. Methods Enzymol. 2020; 638: 139-165https://doi.org/10.1016/bs.mie.2020.03.002 Crossref PubMed Scopus (2) Google Scholar ,14 Chen H. Einstein L.C. Little S.C. Good M.C. Spatiotemporal patterning of zygotic genome activation in a model vertebrate embryo. Dev. Cell. 2019; 49: 852-866.e7https://doi.org/10.1016/j.devcel.2019.05.036 Abstract Full Text Full Text PDF PubMed Scopus (31) Google Scholar yet it is unclear whether the transcriptome follows this pattern. A major challenge in addressing these questions is to accurately measure the timing of each gene activation. Here, we metabolically label and identify the nascent transcriptome using 5-ethynyl uridine (5-EU) in Xenopus blastula embryos. We find that EU-RNA-seq outperforms total RNA-seq in detecting the ZGA transcriptome, which is dominated by transcription from maternal-zygotic genes, enabling improved ZGA timing determination. We uncover discrete spatiotemporal patterns for individual gene activation, a majority following a spatial pattern of ZGA that is correlated with a cell size gradient. 14 Chen H. Einstein L.C. Little S.C. Good M.C. Spatiotemporal patterning of zygotic genome activation in a model vertebrate embryo. Dev. Cell. 2019; 49: 852-866.e7https://doi.org/10.1016/j.devcel.2019.05.036 Abstract Full Text Full Text PDF PubMed Scopus (31) Google Scholar We further reveal that transcription necessitates a period of developmental progression and that ZGA can be precociously induced by cycloheximide, potentially through elongation of interphase. Finally, most ectodermal genes are activated earlier than endodermal genes, suggesting a temporal orchestration of germ-layer-specific genes, potentially linked to the spatially graded pattern of ZGA. Together, our study provides fundamental new insights into the composition and dynamics of the ZGA transcriptome, mechanisms regulating ZGA timing, and its role in the onset of early cell fating. Early embryo development requires maternal-to-zygotic transition, during which transcriptionally silent nuclei begin widespread gene expression during zygotic genome activation (ZGA). 1 Vastenhouw N.L. Cao W.X. Lipshitz H.D. The maternal-to-zygotic transition revisited. Development. 2019; 146: dev161471https://doi.org/10.1242/dev.161471 Crossref PubMed Scopus (112) Google Scholar , 2 Jukam D. Shariati S.A.M. Skotheim J.M. Zygotic genome activation in vertebrates. Dev. Cell. 2017; 42: 316-332https://doi.org/10.1016/j.devcel.2017.07.026 Abstract Full Text Full Text PDF PubMed Scopus (197) Google Scholar , 3 Lee M.T. Bonneau A.R. Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 2014; 30: 581-613https://doi.org/10.1146/annurev-cellbio-100913-013027 Crossref PubMed Scopus (346) Google Scholar ZGA is vital for early cell fating and germ-layer specification, 3 Lee M.T. Bonneau A.R. Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 2014; 30: 581-613https://doi.org/10.1146/annurev-cellbio-100913-013027 Crossref PubMed Scopus (346) Google Scholar ,4 Schulz K.N. Harrison M.M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 2019; 20: 221-234https://doi.org/10.1038/s41576-018-0087-x Crossref PubMed Scopus (175) Google Scholar and ZGA timing is regulated by multiple mechanisms. 1 Vastenhouw N.L. Cao W.X. Lipshitz H.D. The maternal-to-zygotic transition revisited. Development. 2019; 146: dev161471https://doi.org/10.1242/dev.161471 Crossref PubMed Scopus (112) Google Scholar , 2 Jukam D. Shariati S.A.M. Skotheim J.M. Zygotic genome activation in vertebrates. Dev. Cell. 2017; 42: 316-332https://doi.org/10.1016/j.devcel.2017.07.026 Abstract Full Text Full Text PDF PubMed Scopus (197) Google Scholar , 3 Lee M.T. Bonneau A.R. Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 2014; 30: 581-613https://doi.org/10.1146/annurev-cellbio-100913-013027 Crossref PubMed Scopus (346) Google Scholar , 4 Schulz K.N. Harrison M.M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 2019; 20: 221-234https://doi.org/10.1038/s41576-018-0087-x Crossref PubMed Scopus (175) Google Scholar , 5 Pálfy M. Joseph S.R. Vastenhouw N.L. The timing of zygotic genome activation. Curr. Opin. Genet. Dev. 2017; 43: 53-60https://doi.org/10.1016/j.gde.2016.12.001 Crossref PubMed Scopus (39) Google Scholar However, controversies remain about whether these mechanisms are interrelated and vary among species 6 Lu X. Li J.M. Elemento O. Tavazoie S. Wieschaus E.F. Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition. Development. 2009; 136: 2101-2110https://doi.org/10.1242/dev.034421 Crossref PubMed Scopus (83) Google Scholar , 7 Syed S. Wilky H. Raimundo J. Lim B. Amodeo A.A. The nuclear to cytoplasmic ratio directly regulates zygotic transcription in Drosophila through multiple modalities. Proc. Natl. Acad. Sci. USA. 2021; 118 (e2010210118)https://doi.org/10.1073/pnas.2010210118 Crossref Scopus (14) Google Scholar , 8 Strong I.J.T. Lei X. Chen F. Yuan K. O'Farrell P.H. Interphase-arrested Drosophila embryos activate zygotic gene expression and initiate mid-blastula transition events at a low nuclear-cytoplasmic ratio. PLoS Biol. 2020; 18 (e3000891)https://doi.org/10.1371/journal.pbio.3000891 Crossref PubMed Scopus (13) Google Scholar , 9 Edgar B.A. Kiehle C.P. Schubiger G. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell. 1986; 44: 365-372 Abstract Full Text PDF PubMed Scopus (248) Google Scholar , 10 Collart C. Allen G.E. Bradshaw C.R. Smith J.C. Zegerman P. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science. 2013; 341: 893-896https://doi.org/10.1126/science.1241530 Crossref PubMed Scopus (152) Google Scholar and whether the timing of germ-layer-specific gene activation is temporally ordered. 11 Argelaguet R. Clark S.J. Mohammed H. Stapel L.C. Krueger C. Kapourani C.A. Imaz-Rosshandler I. Lohoff T. Xiang Y. Hanna C.W. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature. 2019; 576: 487-491https://doi.org/10.1038/s41586-019-1825-8 Crossref PubMed Scopus (166) Google Scholar ,12 Hashimshony T. Feder M. Levin M. Hall B.K. Yanai I. Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature. 2015; 519: 219-222https://doi.org/10.1038/nature13996 Crossref PubMed Scopus (109) Google Scholar In some embryonic models, widespread ZGA onset is spatiotemporally graded, 13 Chen H. Good M.C. Imaging nascent transcription in wholemount vertebrate embryos to characterize zygotic genome activation. Methods Enzymol. 2020; 638: 139-165https://doi.org/10.1016/bs.mie.2020.03.002 Crossref PubMed Scopus (2) Google Scholar ,14 Chen H. Einstein L.C. Little S.C. Good M.C. Spatiotemporal patterning of zygotic genome activation in a model vertebrate embryo. Dev. Cell. 2019; 49: 852-866.e7https://doi.org/10.1016/j.devcel.2019.05.036 Abstract Full Text Full Text PDF PubMed Scopus (31) Google Scholar yet it is unclear whether the transcriptome follows this pattern. A major challenge in addressing these questions is to accurately measure the timing of each gene activation. Here, we metabolically label and identify the nascent transcriptome using 5-ethynyl uridine (5-EU) in Xenopus blastula embryos. We find that EU-RNA-seq outperforms total RNA-seq in detecting the ZGA transcriptome, which is dominated by transcription from maternal-zygotic genes, enabling improved ZGA timing determination. We uncover discrete spatiotemporal patterns for individual gene activation, a majority following a spatial pattern of ZGA that is correlated with a cell size gradient. 14 Chen H. Einstein L.C. Little S.C. Good M.C. Spatiotemporal patterning of zygotic genome activation in a model vertebrate embryo. Dev. Cell. 2019; 49: 852-866.e7https://doi.org/10.1016/j.devcel.2019.05.036 Abstract Full Text Full Text PDF PubMed Scopus (31) Google Scholar We further reveal that transcription necessitates a period of developmental progression and that ZGA can be precociously induced by cycloheximide, potentially through elongation of interphase. Finally, most ectodermal genes are activated earlier than endodermal genes, suggesting a temporal orchestration of germ-layer-specific genes, potentially linked to the spatially graded pattern of ZGA. Together, our study provides fundamental new insights into the composition and dynamics of the ZGA transcriptome, mechanisms regulating ZGA timing, and its role in the onset of early cell fating.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助青野采纳,获得10
1秒前
无语的沛春完成签到,获得积分10
1秒前
wxp19发布了新的文献求助20
1秒前
tianya完成签到,获得积分10
2秒前
完美世界应助sunshine采纳,获得10
2秒前
科研通AI2S应助马er采纳,获得10
3秒前
skbkbe完成签到,获得积分10
3秒前
3秒前
CAOHOU应助酷酷银耳汤采纳,获得10
3秒前
4秒前
7秒前
高贵梦露发布了新的文献求助10
9秒前
11秒前
12秒前
GL发布了新的文献求助10
12秒前
乐乐应助如意枫叶采纳,获得10
12秒前
13秒前
史念薇发布了新的文献求助10
13秒前
xixi完成签到 ,获得积分10
13秒前
15秒前
青野发布了新的文献求助10
17秒前
20秒前
21秒前
高贵梦露完成签到,获得积分10
21秒前
23秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
如意枫叶发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
30秒前
31秒前
32秒前
赘婿应助GL采纳,获得10
32秒前
33秒前
33秒前
Archer宇完成签到,获得积分10
33秒前
狸花小喵发布了新的文献求助10
35秒前
科研废物完成签到 ,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136