Numerical investigation of machining of SiC/Al matrix composites by a coupled SPH and FEM

有限元法 光滑粒子流体力学 材料科学 机械加工 碎屑形成 联轴节(管道) 变形(气象学) 基质(化学分析) 复合材料 结构工程 机械 工程类 刀具磨损 物理 冶金
作者
Xiaoyan Teng,Dehan Xiao,Xudong Jiang
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:122 (3-4): 2003-2018 被引量:4
标识
DOI:10.1007/s00170-022-09985-5
摘要

The machining process of SiC/Al matrix composites is characterized by strong nonlinearity, and thus, there are great challenges resulting from excessive deformation and stress concentration at the tool-workpiece interface in solving such problems. Smoothed particle hydrodynamics (SPH) as a particle-based algorithm can efficiently tackle mesh distortion due to large deformation using finite element method (FEM) for cutting simulations. However, the computational efficiency by SPH is far below the counterpart by FEM. As a result, to address such issues with individual use of SPH or FEM, the coupled SPH-FEM algorithm is presented to calculate large deformation of aluminum matrix using SPH and small deformation of SiC particles using FEM. This paper aims to develop a SPH-FEM coupling model of machining SiC/Al matrix composites and compare the results with an equivalent FE model. A good agreement between numerical results from the SPH-FEM model and those from the FE model is achieved, which shows that the SPH-FEM coupling method is an alternative to FEM for predicting the cutting force, chip formation, and machined surface morphology. The developed SPH-FEM model is also employed to investigate the influence of the cutting parameters including SiC volume fraction, cutting velocity, and uncut chip thickness on the cutting force. Finally, the orthogonal cutting experiments were conducted to validate the presented SPH-FEM model. Numerical results are in good agreement with experimental results, which confirms that SPH-FEM can accurately predict the resulting cutting force and machined surface morphology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸葛语蝶完成签到,获得积分10
刚刚
通~发布了新的文献求助10
刚刚
xpp完成签到 ,获得积分10
1秒前
dyh6802发布了新的文献求助10
1秒前
1秒前
2秒前
短腿小柯基完成签到,获得积分10
2秒前
完美世界应助研一小刘采纳,获得10
2秒前
2秒前
水萝卜完成签到 ,获得积分10
3秒前
3秒前
高高完成签到,获得积分10
4秒前
甜甜晓露发布了新的文献求助10
4秒前
ChiDaiOLD发布了新的文献求助10
5秒前
6秒前
szl完成签到,获得积分10
6秒前
7秒前
orixero应助跳跃的静曼采纳,获得10
7秒前
诺奖离我十万八千里完成签到,获得积分10
7秒前
高高发布了新的文献求助10
7秒前
11秒前
深情安青应助机智的青槐采纳,获得10
11秒前
茶茶发布了新的文献求助10
11秒前
szl发布了新的文献求助10
11秒前
Lucas应助京阿尼采纳,获得10
12秒前
甜甜晓露完成签到,获得积分10
13秒前
科研通AI5应助qifa采纳,获得10
13秒前
shrike完成签到 ,获得积分10
13秒前
有魅力白开水完成签到,获得积分20
13秒前
小蒲完成签到 ,获得积分10
14秒前
万能图书馆应助大力鱼采纳,获得10
14秒前
15秒前
Rrr发布了新的文献求助10
16秒前
跳跃的静曼完成签到,获得积分10
16秒前
丰富的不惜完成签到,获得积分10
17秒前
18秒前
wfc完成签到,获得积分10
18秒前
浅梨涡完成签到 ,获得积分10
20秒前
JamesPei应助椰子熟了耶采纳,获得20
21秒前
hanyang965发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808