Numerical investigation of machining of SiC/Al matrix composites by a coupled SPH and FEM

有限元法 光滑粒子流体力学 材料科学 机械加工 碎屑形成 联轴节(管道) 变形(气象学) 基质(化学分析) 复合材料 结构工程 机械 工程类 刀具磨损 物理 冶金
作者
Xiaoyan Teng,Dehan Xiao,Xudong Jiang
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Science+Business Media]
卷期号:122 (3-4): 2003-2018 被引量:4
标识
DOI:10.1007/s00170-022-09985-5
摘要

The machining process of SiC/Al matrix composites is characterized by strong nonlinearity, and thus, there are great challenges resulting from excessive deformation and stress concentration at the tool-workpiece interface in solving such problems. Smoothed particle hydrodynamics (SPH) as a particle-based algorithm can efficiently tackle mesh distortion due to large deformation using finite element method (FEM) for cutting simulations. However, the computational efficiency by SPH is far below the counterpart by FEM. As a result, to address such issues with individual use of SPH or FEM, the coupled SPH-FEM algorithm is presented to calculate large deformation of aluminum matrix using SPH and small deformation of SiC particles using FEM. This paper aims to develop a SPH-FEM coupling model of machining SiC/Al matrix composites and compare the results with an equivalent FE model. A good agreement between numerical results from the SPH-FEM model and those from the FE model is achieved, which shows that the SPH-FEM coupling method is an alternative to FEM for predicting the cutting force, chip formation, and machined surface morphology. The developed SPH-FEM model is also employed to investigate the influence of the cutting parameters including SiC volume fraction, cutting velocity, and uncut chip thickness on the cutting force. Finally, the orthogonal cutting experiments were conducted to validate the presented SPH-FEM model. Numerical results are in good agreement with experimental results, which confirms that SPH-FEM can accurately predict the resulting cutting force and machined surface morphology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Nancy完成签到 ,获得积分10
1秒前
3秒前
无所归兮发布了新的文献求助10
3秒前
3秒前
陈陈发布了新的文献求助30
5秒前
破心发布了新的文献求助10
5秒前
多情的捕完成签到,获得积分10
6秒前
7秒前
9秒前
望舒发布了新的文献求助10
9秒前
彭于晏应助林洛沁采纳,获得10
10秒前
01完成签到,获得积分10
12秒前
万能图书馆应助Advocate采纳,获得10
13秒前
1177发布了新的文献求助10
14秒前
梦Weimar发布了新的文献求助10
14秒前
14秒前
qq发布了新的文献求助10
15秒前
iiiyyy发布了新的文献求助10
17秒前
杜兰特发布了新的文献求助10
17秒前
tclouds发布了新的文献求助30
17秒前
17秒前
18秒前
19秒前
19秒前
嗷嗷发布了新的文献求助10
20秒前
小庄完成签到 ,获得积分10
20秒前
巨星不吃辣完成签到,获得积分10
21秒前
21秒前
22秒前
aaaa发布了新的文献求助10
22秒前
pokexuejiao发布了新的文献求助20
23秒前
23秒前
情怀应助kjmooo采纳,获得10
23秒前
24秒前
25秒前
归尘发布了新的文献求助10
26秒前
怕孤单的熊猫完成签到 ,获得积分10
26秒前
机灵白桃发布了新的文献求助10
26秒前
lm发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992317
求助须知:如何正确求助?哪些是违规求助? 3533285
关于积分的说明 11261852
捐赠科研通 3272704
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459