亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting conversion from mild cognitive impairment to Alzheimer’s disease with multimodal latent factors

磁共振成像 心理学 逻辑回归 神经影像学 神经心理学 脑脊液 曲线下面积 内科学 验证性因素分析 阿尔茨海默病 认知 疾病 医学 结构方程建模 神经科学 机器学习 放射科 计算机科学
作者
Min Chang,Charles J. Brainerd
出处
期刊:Journal of Clinical and Experimental Neuropsychology [Taylor & Francis]
卷期号:44 (4): 316-335 被引量:4
标识
DOI:10.1080/13803395.2022.2115015
摘要

We studied the ability of latent factor scores to predict conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD) and investigated whether multimodal factor scores improve predictive power, relative to single-modal factor scores.We conducted exploratory factor analyses (EFAs) and confirmatory factor analyses (CFAs) of the baseline data of MCI subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) to generate factor scores for three data modalities: neuropsychological (NP), magnetic resonance imaging (MRI), and cerebrospinal fluid (CSF). Factor scores from single or multiple modalities were entered in logistic regression models to predict MCI to AD conversion for 160 ADNI subjects over a 2-year interval.NP factors attained an area under the curve (AUC) of .80, with a sensitivity of .66 and a specificity of .77. MRI factors reached a comparable level of performance (AUC = .80, sensitivity = .66, specificity = .78), whereas CSF factors produced weaker prediction (AUC = .70, sensitivity = .56, specificity = .79). Combining NP factors with MRI or CSF factors produced better prediction than either MRI or CSF factors alone. Similarly, adding MRI factors to NP or CSF factors produced improvements in prediction relative to NP or CSF factors alone. However, adding CSF factors to either NP or MRI factors produced no improvement in prediction.Latent factor scores provided good accuracy for predicting MCI to AD conversion. Adding NP or MRI factors to factors from other modalities enhanced predictive power but adding CSF factors did not.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助200
23秒前
量子星尘发布了新的文献求助10
36秒前
量子星尘发布了新的文献求助10
43秒前
量子星尘发布了新的文献求助10
54秒前
量子星尘发布了新的文献求助50
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
坚强白凝发布了新的文献求助10
1分钟前
JamesPei应助坚强白凝采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
俊逸吐司完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
jia完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
繁荣的心情完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助30
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666365
求助须知:如何正确求助?哪些是违规求助? 3225436
关于积分的说明 9762962
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607589
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188