Fast nonnegative matrix tri-factorization for large-scale data co-clustering

非负矩阵分解 矩阵分解 聚类分析 计算机科学 基质(化学分析) 非负矩阵 稀疏矩阵 算法 对称矩阵 人工智能 特征向量 物理 材料科学 复合材料 量子力学 高斯分布
作者
Hua Wang,Feiping Nie,Heng Huang,Fillia Makedon
出处
期刊:International Joint Conference on Artificial Intelligence 卷期号:: 1553-1558 被引量:32
标识
DOI:10.5591/978-1-57735-516-8/ijcai11-261
摘要

Nonnegative Matrix Factorization (NMF) based coclustering methods have attracted increasing attention in recent years because of their mathematical elegance and encouraging empirical results. However, the algorithms to solve NMF problems usually involve intensive matrix multiplications, which make them computationally inefficient. In this paper, instead of constraining the factor matrices of NMF to be nonnegative as existing methods, we propose a novel Fast Nonnegative Matrix Trifactorization (FNMTF) approach to constrain them to be cluster indicator matrices, a special type of nonnegative matrices. As a result, the optimization problem of our approach can be decoupled, which results in much smaller size subproblems requiring much less matrix multiplications, such that our approach works well for large-scale input data. Moreover, the resulted factor matrices can directly assign cluster labels to data points and features due to the nature of indicator matrices. In addition, through exploiting the manifold structures in both data and feature spaces, we further introduce the Locality Preserved FNMTF (LP-FNMTF) approach, by which the clustering performance is improved. The promising results in extensive experimental evaluations validate the effectiveness of the proposed methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
马凯东发布了新的文献求助10
3秒前
黑眼圈发布了新的文献求助10
3秒前
4秒前
共享精神应助nemo采纳,获得10
4秒前
4秒前
酷波er应助CCC采纳,获得10
5秒前
JamesPei应助福征采纳,获得10
5秒前
7秒前
万能图书馆应助尹恩惠采纳,获得10
8秒前
sume24发布了新的文献求助10
8秒前
Sal完成签到,获得积分10
8秒前
小M发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
科目三应助坦率的万言采纳,获得10
11秒前
妮露的修狗完成签到,获得积分10
12秒前
13秒前
噼里啪啦完成签到 ,获得积分10
13秒前
书双完成签到,获得积分10
14秒前
takumi关注了科研通微信公众号
14秒前
daisies应助lihailong采纳,获得10
14秒前
15秒前
sfsdg发布了新的文献求助10
15秒前
16秒前
YQQ完成签到,获得积分10
16秒前
labbiqq发布了新的文献求助10
16秒前
天天快乐应助sdgfv采纳,获得10
16秒前
小M完成签到,获得积分10
17秒前
满意的烨磊完成签到,获得积分10
18秒前
21秒前
书双发布了新的文献求助20
21秒前
翻羽发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959455
求助须知:如何正确求助?哪些是违规求助? 3505634
关于积分的说明 11125092
捐赠科研通 3237449
什么是DOI,文献DOI怎么找? 1789148
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802858