Performance comparison between Logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus.

过度拟合 查德 逻辑回归 决策树 阿卡克信息准则 多层感知器 统计 人工智能 感知器 朴素贝叶斯分类器 计算机科学 机器学习 数学 数据挖掘 医学 支持向量机 人工神经网络
作者
Changping Li,Xinyue Zhi,Jun Ma,Zhuang Cui,Zilong Zhu,Cui Zhang,Liang-ping Hu
出处
期刊:PubMed 卷期号:125 (5): 851-7 被引量:34
链接
标识
摘要

Various methods can be applied to build predictive models for the clinical data with binary outcome variable. This research aims to explore the process of constructing common predictive models, Logistic regression (LR), decision tree (DT) and multilayer perceptron (MLP), as well as focus on specific details when applying the methods mentioned above: what preconditions should be satisfied, how to set parameters of the model, how to screen variables and build accuracy models quickly and efficiently, and how to assess the generalization ability (that is, prediction performance) reliably by Monte Carlo method in the case of small sample size.All the 274 patients (include 137 type 2 diabetes mellitus with diabetic peripheral neuropathy and 137 type 2 diabetes mellitus without diabetic peripheral neuropathy) from the Metabolic Disease Hospital in Tianjin participated in the study. There were 30 variables such as sex, age, glycosylated hemoglobin, etc. On account of small sample size, the classification and regression tree (CART) with the chi-squared automatic interaction detector tree (CHAID) were combined by means of the 100 times 5-7 fold stratified cross-validation to build DT. The MLP was constructed by Schwarz Bayes Criterion to choose the number of hidden layers and hidden layer units, alone with levenberg-marquardt (L-M) optimization algorithm, weight decay and preliminary training method. Subsequently, LR was applied by the best subset method with the Akaike Information Criterion (AIC) to make the best used of information and avoid overfitting. Eventually, a 10 to 100 times 3-10 fold stratified cross-validation method was used to compare the generalization ability of DT, MLP and LR in view of the areas under the receiver operating characteristic (ROC) curves (AUC).The AUC of DT, MLP and LR were 0.8863, 0.8536 and 0.8802, respectively. As the larger the AUC of a specific prediction model is, the higher diagnostic ability presents, MLP performed optimally, and then followed by LR and DT in terms of 10-100 times 2-10 fold stratified cross-validation in our study. Neural network model is a preferred option for the data. However, the best subset of multiple LR would be a better choice in view of efficiency and accuracy.When dealing with data from small size sample, multiple independent variables and a dichotomous outcome variable, more strategies and statistical techniques (such as AIC criteria, L-M optimization algorithm, the best subset, etc.) should be considered to build a forecast model and some available methods (such as cross-validation, AUC, etc.) could be used for evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彤彤彤红红红完成签到,获得积分10
刚刚
刚刚
羊成木木发布了新的文献求助10
刚刚
WRL发布了新的文献求助10
1秒前
3秒前
搞怪莫茗应助xiaowen采纳,获得10
5秒前
无花果应助Shirley采纳,获得30
7秒前
7秒前
诸茹嫣发布了新的文献求助10
8秒前
8秒前
小白鞋完成签到 ,获得积分10
9秒前
fei发布了新的文献求助20
10秒前
852应助熊熊采纳,获得10
12秒前
12秒前
12秒前
12秒前
14秒前
踏实凡阳发布了新的文献求助10
14秒前
希望天下0贩的0应助CQ采纳,获得10
15秒前
糊糊应助Alisa采纳,获得10
15秒前
Lekai发布了新的文献求助10
16秒前
禾苗发布了新的文献求助10
18秒前
沉静的时光完成签到 ,获得积分10
19秒前
19秒前
21秒前
小刘完成签到,获得积分10
21秒前
grumpysquirel发布了新的文献求助30
21秒前
几两发布了新的文献求助10
21秒前
gez关闭了gez文献求助
21秒前
今后应助西瓜采纳,获得10
21秒前
24秒前
酷波er应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
yznfly应助科研通管家采纳,获得30
25秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
yznfly应助科研通管家采纳,获得30
26秒前
yznfly应助科研通管家采纳,获得30
26秒前
Ava应助科研通管家采纳,获得10
26秒前
钢铁科研应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019