Performance comparison between Logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus.

过度拟合 查德 逻辑回归 决策树 阿卡克信息准则 多层感知器 统计 人工智能 感知器 朴素贝叶斯分类器 计算机科学 机器学习 数学 数据挖掘 医学 支持向量机 人工神经网络
作者
Changping Li,Xinyue Zhi,Jun Ma,Zhuang Cui,Zilong Zhu,Cui Zhang,Liang-ping Hu
出处
期刊:PubMed 卷期号:125 (5): 851-7 被引量:34
链接
标识
摘要

Various methods can be applied to build predictive models for the clinical data with binary outcome variable. This research aims to explore the process of constructing common predictive models, Logistic regression (LR), decision tree (DT) and multilayer perceptron (MLP), as well as focus on specific details when applying the methods mentioned above: what preconditions should be satisfied, how to set parameters of the model, how to screen variables and build accuracy models quickly and efficiently, and how to assess the generalization ability (that is, prediction performance) reliably by Monte Carlo method in the case of small sample size.All the 274 patients (include 137 type 2 diabetes mellitus with diabetic peripheral neuropathy and 137 type 2 diabetes mellitus without diabetic peripheral neuropathy) from the Metabolic Disease Hospital in Tianjin participated in the study. There were 30 variables such as sex, age, glycosylated hemoglobin, etc. On account of small sample size, the classification and regression tree (CART) with the chi-squared automatic interaction detector tree (CHAID) were combined by means of the 100 times 5-7 fold stratified cross-validation to build DT. The MLP was constructed by Schwarz Bayes Criterion to choose the number of hidden layers and hidden layer units, alone with levenberg-marquardt (L-M) optimization algorithm, weight decay and preliminary training method. Subsequently, LR was applied by the best subset method with the Akaike Information Criterion (AIC) to make the best used of information and avoid overfitting. Eventually, a 10 to 100 times 3-10 fold stratified cross-validation method was used to compare the generalization ability of DT, MLP and LR in view of the areas under the receiver operating characteristic (ROC) curves (AUC).The AUC of DT, MLP and LR were 0.8863, 0.8536 and 0.8802, respectively. As the larger the AUC of a specific prediction model is, the higher diagnostic ability presents, MLP performed optimally, and then followed by LR and DT in terms of 10-100 times 2-10 fold stratified cross-validation in our study. Neural network model is a preferred option for the data. However, the best subset of multiple LR would be a better choice in view of efficiency and accuracy.When dealing with data from small size sample, multiple independent variables and a dichotomous outcome variable, more strategies and statistical techniques (such as AIC criteria, L-M optimization algorithm, the best subset, etc.) should be considered to build a forecast model and some available methods (such as cross-validation, AUC, etc.) could be used for evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkPi发布了新的文献求助10
2秒前
无语的大碗完成签到,获得积分10
3秒前
英吉利25发布了新的文献求助50
4秒前
4秒前
私欲宝宝发布了新的文献求助10
5秒前
傲娇时光完成签到,获得积分10
5秒前
Akim应助kkPi采纳,获得10
6秒前
紫丁香完成签到 ,获得积分10
7秒前
四叶草哦完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
机智乐蕊完成签到,获得积分10
9秒前
10秒前
故事细腻完成签到 ,获得积分10
10秒前
Zzy0816完成签到,获得积分10
10秒前
棉花完成签到 ,获得积分10
10秒前
无极微光应助学术牛马采纳,获得20
10秒前
11秒前
nanjiab发布了新的文献求助10
11秒前
11秒前
山雀完成签到,获得积分10
13秒前
任炳成完成签到,获得积分20
14秒前
Rowan发布了新的文献求助10
14秒前
kkkkpoa完成签到,获得积分10
15秒前
善良水池完成签到,获得积分10
15秒前
16秒前
Lucy发布了新的文献求助10
16秒前
16秒前
完美世界应助bbbjddd采纳,获得10
16秒前
忧伤的映阳完成签到 ,获得积分10
17秒前
zbaby发布了新的文献求助10
17秒前
17秒前
17秒前
Ava应助笑点低的静竹采纳,获得10
18秒前
Orange应助坚强的访蕊采纳,获得10
19秒前
受伤毛豆完成签到,获得积分10
19秒前
酷波er应助私欲宝宝采纳,获得10
19秒前
后知后觉发布了新的文献求助10
20秒前
21秒前
DD发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600957
求助须知:如何正确求助?哪些是违规求助? 4686530
关于积分的说明 14844417
捐赠科研通 4679086
什么是DOI,文献DOI怎么找? 2539100
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252