Performance comparison between Logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus.

过度拟合 查德 逻辑回归 决策树 阿卡克信息准则 多层感知器 统计 人工智能 感知器 朴素贝叶斯分类器 计算机科学 机器学习 数学 数据挖掘 医学 支持向量机 人工神经网络
作者
Changping Li,Xinyue Zhi,Jun Ma,Zhuang Cui,Zilong Zhu,Cui Zhang,Liang-ping Hu
出处
期刊:PubMed 卷期号:125 (5): 851-7 被引量:34
链接
标识
摘要

Various methods can be applied to build predictive models for the clinical data with binary outcome variable. This research aims to explore the process of constructing common predictive models, Logistic regression (LR), decision tree (DT) and multilayer perceptron (MLP), as well as focus on specific details when applying the methods mentioned above: what preconditions should be satisfied, how to set parameters of the model, how to screen variables and build accuracy models quickly and efficiently, and how to assess the generalization ability (that is, prediction performance) reliably by Monte Carlo method in the case of small sample size.All the 274 patients (include 137 type 2 diabetes mellitus with diabetic peripheral neuropathy and 137 type 2 diabetes mellitus without diabetic peripheral neuropathy) from the Metabolic Disease Hospital in Tianjin participated in the study. There were 30 variables such as sex, age, glycosylated hemoglobin, etc. On account of small sample size, the classification and regression tree (CART) with the chi-squared automatic interaction detector tree (CHAID) were combined by means of the 100 times 5-7 fold stratified cross-validation to build DT. The MLP was constructed by Schwarz Bayes Criterion to choose the number of hidden layers and hidden layer units, alone with levenberg-marquardt (L-M) optimization algorithm, weight decay and preliminary training method. Subsequently, LR was applied by the best subset method with the Akaike Information Criterion (AIC) to make the best used of information and avoid overfitting. Eventually, a 10 to 100 times 3-10 fold stratified cross-validation method was used to compare the generalization ability of DT, MLP and LR in view of the areas under the receiver operating characteristic (ROC) curves (AUC).The AUC of DT, MLP and LR were 0.8863, 0.8536 and 0.8802, respectively. As the larger the AUC of a specific prediction model is, the higher diagnostic ability presents, MLP performed optimally, and then followed by LR and DT in terms of 10-100 times 2-10 fold stratified cross-validation in our study. Neural network model is a preferred option for the data. However, the best subset of multiple LR would be a better choice in view of efficiency and accuracy.When dealing with data from small size sample, multiple independent variables and a dichotomous outcome variable, more strategies and statistical techniques (such as AIC criteria, L-M optimization algorithm, the best subset, etc.) should be considered to build a forecast model and some available methods (such as cross-validation, AUC, etc.) could be used for evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1351567822应助小可爱采纳,获得50
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
wanci应助zeannezg采纳,获得10
1秒前
2秒前
Cheney_lee发布了新的文献求助10
2秒前
LzG完成签到,获得积分10
2秒前
3秒前
小二郎应助材料小白采纳,获得10
3秒前
25号底片发布了新的文献求助10
3秒前
111发布了新的文献求助10
3秒前
4秒前
科研通AI6应助LL采纳,获得10
4秒前
5秒前
萤火虫发布了新的文献求助10
5秒前
爱听歌代芙应助陌上采纳,获得10
5秒前
5秒前
一点通完成签到,获得积分10
5秒前
6秒前
6秒前
缥缈傥发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
cdx完成签到,获得积分10
8秒前
乐乐应助huilin采纳,获得10
8秒前
柒柒完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
在水一方应助多情的奄采纳,获得10
10秒前
Giroro_roro发布了新的文献求助10
10秒前
10秒前
潇洒皮带完成签到,获得积分10
10秒前
Hi发布了新的文献求助10
10秒前
10秒前
10秒前
chenyao完成签到,获得积分10
10秒前
11秒前
11秒前
所所应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006