A new component-based normalization method for PET cameras

规范化(社会学) 探测器 数学 反向 算法 同质性(统计学) 计算机科学 人工智能 统计 物理 几何学 光学 社会学 人类学
作者
Hossain Baghaei,Hui Li,Yang Wang,Y. Zhang,S. H. Kim,Rocío Escandón Ramírez,J. B. Liu,Shuai Liu,Wai-Hoi Wong
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine and Molecular Imaging]
卷期号:48 被引量:3
摘要

1793 Objectives: In positron emission tomography (PET), in order to generate artifact-free images, the nonuniformity of the sensitivity of the lines of response (LORs) must be corrected with appropriate normalization coefficients (NCs). There are two commonly used methods for estimating the normalization coefficients in 3D PET: direct method and component-based method. In direct method the NC is proportional to the inverse of the counts acquired for a given LOR when every LOR is illuminated by the same level of activity. The direct method requires long acquisition time (many hours) for good statistic in each LOR. In component-based technique the NC is generally expressed as the product of crystals efficiencies and geometric factors. In this work, we present a new and fast component-based normalization method for 3D PET data which also accounts for count-rate effects in NCs. Methods: In this new method the geometric correction factor is expressed as the product of two components: the first component is only a function of radial position and second term depends on location of the crystal in the block and in the module. The first geometric component which is count-rate independent is calculated from the geometry of the crystals in camera’s ring and does not change unless camera configuration changes. The second geometric component, in combination with the detector efficiency, can be obtained from data acquired using a uniformly distributed activity. In this method, the number of unknown parameters is reduced from the extremely large number of LORs to the number of crystals in the camera. This makes it possible to collect data with reasonable statistics in short time (e.g. 10 minutes). Results: We have evaluated the new normalization method for a dedicated small animal PET camera operating in 3D mode over a wide range of count-rates and compared the results with direct method using a 2 inch uniform normalization phantom for several different count rates. Currently we are also implementing this method for a whole-body PET camera and initial results are very promising. Conclusions: The new component-based normalization method for 3D PET data allows a fast acquisition of normalization data for different levels of count rates and improves the image quality compared to the much slower direct method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DZT发布了新的文献求助10
1秒前
FashionBoy应助Skywings采纳,获得30
1秒前
范白容完成签到 ,获得积分0
4秒前
KX2024完成签到,获得积分10
6秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
10秒前
岳小龙完成签到 ,获得积分10
10秒前
ipcy完成签到 ,获得积分10
12秒前
完美世界应助高工采纳,获得10
16秒前
安子完成签到 ,获得积分10
17秒前
现实的大白完成签到 ,获得积分10
20秒前
25秒前
31秒前
31秒前
高工发布了新的文献求助10
36秒前
淡定的如风完成签到,获得积分10
38秒前
43秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
快乐含烟完成签到 ,获得积分10
49秒前
高工完成签到,获得积分10
54秒前
ran完成签到 ,获得积分10
55秒前
快乐含烟关注了科研通微信公众号
55秒前
sweet雪儿妞妞完成签到 ,获得积分10
1分钟前
1分钟前
517完成签到 ,获得积分10
1分钟前
磊大彪完成签到 ,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
宝宝发布了新的文献求助10
1分钟前
飞鸿雪花完成签到 ,获得积分10
1分钟前
萧水白应助宝宝采纳,获得10
1分钟前
Yolo完成签到 ,获得积分10
2分钟前
yao完成签到 ,获得积分10
2分钟前
追寻的续完成签到 ,获得积分10
2分钟前
俊逸的盛男完成签到 ,获得积分10
2分钟前
00完成签到 ,获得积分10
2分钟前
Xu发布了新的文献求助50
2分钟前
路过完成签到 ,获得积分10
2分钟前
2分钟前
digger2023完成签到 ,获得积分10
2分钟前
daheeeee完成签到,获得积分10
2分钟前
zhilianghui0807完成签到 ,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965729
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155814
捐赠科研通 3245466
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804247