医学
心房颤动
心脏病学
心室重构
纤维化
内科学
心房颤动的处理
生物标志物
疾病
人口
心力衰竭
生物信息学
神经科学
生物化学
化学
环境卫生
生物
作者
Stanley Nattel,Masahide Harada
标识
DOI:10.1016/j.jacc.2014.02.555
摘要
Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice. AF and its complications are responsible for important population morbidity and mortality. Presently available therapeutic approaches have limited efficacy and nontrivial potential to cause adverse effects. Thus, new mechanistic knowledge is essential for therapeutic innovation. Atrial arrhythmogenic remodeling, defined as any change in atrial structure or function that promotes atrial arrhythmias, is central to AF. Remodeling can be due to underlying cardiac conditions, systemic processes and conditions such as aging, or AF itself. Recent work has underlined the importance of remodeling in AF, provided new insights into basic mechanisms, and identified new biomarker/imaging approaches to follow remodeling processes. The importance of intracellular Ca(2+) handling abnormalities has been highlighted, both for the induction of triggered ectopic activity and for the activation of Ca(2+)-related cell signaling that mediates profibrillatory remodeling. The importance of microRNAs, which are a new class of small noncoding sequences that regulate gene expression, has emerged in both electrical and structural remodeling. Remodeling related to aging, cardiac disease, and AF itself is believed to underlie the progressive nature of the arrhythmia, which contributes to the complexities of long-term management. New tools that are being developed to quantify remodeling processes and monitor their progression include novel biomarkers, imaging modalities to quantify/localize fibrosis, and noninvasive monitoring/mapping to better characterize the burden of AF and identify arrhythmic sources. This report reviews recent advances in the understanding of the basic pathophysiology of atrial remodeling and potential therapeutic implications.
科研通智能强力驱动
Strongly Powered by AbleSci AI