Textured Image Segmentation

人工智能 计算机视觉 计算机科学 分割 图像(数学) 图像分割 模式识别(心理学)
作者
Kenneth Laws
标识
DOI:10.21236/ada083283
摘要

Abstract : The problem of image texture analysis is introduced, and existing approaches are surveyed. An empirical evaluation method is applied to two texture measurement systems, co-occurrence statistics and augmented correlation statistics. A spatial-statistical class of texture measures is then defined and evaluated. It leads to a simple class of texture energy transforms, which perform better than any of the preceding methods. These transforms are very fast, and can be made invariant to changes in luminance, contrast, and rotation without histogram equalization or other preprocessing. Texture energy is measured by filtering with small masks, typically 5x5, then with a moving-window average of the absolute image values. This method, similar to human visual processing, is appropriate for textures with short coherence length or correlation distance. The filter masks are integer-valued and separable, and can be implemented with one-dimensional or 3x3 convolutions. The averaging operation is also very fast, with computing time independent of window size. Texture energy planes may be linearly combined to form a smaller number of discriminant planes. These principal component planes seem to represent natural texture dimensions, and to be more reliable texture measures than the texture energy planes. Texture segmentation or classification may be accomplished using either texture energy or principal component planes as input. This study classified 15x15 blocks of eight natural textures. Accuracies of 72% were achieved with co- occurrence statistics, 65% with augmented correlation statistics, and 94% with texture energy statistics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖Q完成签到 ,获得积分20
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
liciky完成签到 ,获得积分10
3秒前
潘健康发布了新的文献求助10
3秒前
复杂的乐蕊完成签到,获得积分10
3秒前
Dave发布了新的文献求助10
3秒前
林一发布了新的文献求助10
5秒前
今后应助积极的老鼠采纳,获得10
5秒前
彭于晏应助yuhan采纳,获得10
5秒前
sin3xas4sin3x完成签到,获得积分10
6秒前
7秒前
上官若男应助Rosemary采纳,获得10
7秒前
Lim1819完成签到 ,获得积分10
8秒前
脑洞疼应助小胡爱科研采纳,获得10
8秒前
lin发布了新的文献求助20
9秒前
9秒前
12秒前
12秒前
Hibiscus95发布了新的文献求助10
14秒前
14秒前
zy177发布了新的文献求助10
15秒前
15秒前
AN应助小明采纳,获得10
16秒前
Elan完成签到 ,获得积分10
17秒前
xxxx发布了新的文献求助30
17秒前
77发布了新的文献求助10
19秒前
yuhan发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
林一完成签到,获得积分10
22秒前
酷波er应助zy177采纳,获得10
22秒前
22秒前
彭于晏应助陈惠123采纳,获得10
23秒前
leiwenyulan发布了新的文献求助10
24秒前
monica完成签到 ,获得积分10
24秒前
香蕉觅云应助lshl2000采纳,获得10
24秒前
完美世界应助没想到羽毛采纳,获得10
25秒前
言言完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879