Textured Image Segmentation

人工智能 计算机视觉 计算机科学 分割 图像(数学) 图像分割 模式识别(心理学)
作者
Kenneth Laws
标识
DOI:10.21236/ada083283
摘要

Abstract : The problem of image texture analysis is introduced, and existing approaches are surveyed. An empirical evaluation method is applied to two texture measurement systems, co-occurrence statistics and augmented correlation statistics. A spatial-statistical class of texture measures is then defined and evaluated. It leads to a simple class of texture energy transforms, which perform better than any of the preceding methods. These transforms are very fast, and can be made invariant to changes in luminance, contrast, and rotation without histogram equalization or other preprocessing. Texture energy is measured by filtering with small masks, typically 5x5, then with a moving-window average of the absolute image values. This method, similar to human visual processing, is appropriate for textures with short coherence length or correlation distance. The filter masks are integer-valued and separable, and can be implemented with one-dimensional or 3x3 convolutions. The averaging operation is also very fast, with computing time independent of window size. Texture energy planes may be linearly combined to form a smaller number of discriminant planes. These principal component planes seem to represent natural texture dimensions, and to be more reliable texture measures than the texture energy planes. Texture segmentation or classification may be accomplished using either texture energy or principal component planes as input. This study classified 15x15 blocks of eight natural textures. Accuracies of 72% were achieved with co- occurrence statistics, 65% with augmented correlation statistics, and 94% with texture energy statistics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三番又六次完成签到 ,获得积分10
刚刚
纷花雨发布了新的文献求助10
刚刚
友好的以旋完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
小赞芽完成签到,获得积分10
1秒前
LUMOS完成签到,获得积分10
1秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
2秒前
2秒前
yuyu完成签到,获得积分10
2秒前
落落发布了新的文献求助10
2秒前
3秒前
爱喝冰可乐完成签到,获得积分20
4秒前
jia完成签到,获得积分10
4秒前
传奇3应助HopeStar采纳,获得10
5秒前
liike发布了新的文献求助10
5秒前
melodyezi完成签到,获得积分20
5秒前
要开心完成签到,获得积分10
5秒前
喜洋洋完成签到,获得积分20
5秒前
6秒前
7秒前
cc完成签到,获得积分20
7秒前
科目三应助芋圆Z.采纳,获得10
8秒前
情怀应助Tonson采纳,获得10
8秒前
8秒前
Tutusamo完成签到 ,获得积分10
8秒前
无限的隶发布了新的文献求助10
8秒前
科目三应助Yeong采纳,获得10
8秒前
Ll发布了新的文献求助10
9秒前
9秒前
思源应助melodyezi采纳,获得10
10秒前
蓝色条纹衫完成签到 ,获得积分10
10秒前
11秒前
11秒前
kingwhitewing发布了新的文献求助10
11秒前
灵巧汉堡完成签到 ,获得积分10
12秒前
SciGPT应助幸福胡萝卜采纳,获得10
13秒前
积极晓兰完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759