Textured Image Segmentation

人工智能 计算机视觉 计算机科学 分割 图像(数学) 图像分割 模式识别(心理学)
作者
Kenneth Laws
标识
DOI:10.21236/ada083283
摘要

Abstract : The problem of image texture analysis is introduced, and existing approaches are surveyed. An empirical evaluation method is applied to two texture measurement systems, co-occurrence statistics and augmented correlation statistics. A spatial-statistical class of texture measures is then defined and evaluated. It leads to a simple class of texture energy transforms, which perform better than any of the preceding methods. These transforms are very fast, and can be made invariant to changes in luminance, contrast, and rotation without histogram equalization or other preprocessing. Texture energy is measured by filtering with small masks, typically 5x5, then with a moving-window average of the absolute image values. This method, similar to human visual processing, is appropriate for textures with short coherence length or correlation distance. The filter masks are integer-valued and separable, and can be implemented with one-dimensional or 3x3 convolutions. The averaging operation is also very fast, with computing time independent of window size. Texture energy planes may be linearly combined to form a smaller number of discriminant planes. These principal component planes seem to represent natural texture dimensions, and to be more reliable texture measures than the texture energy planes. Texture segmentation or classification may be accomplished using either texture energy or principal component planes as input. This study classified 15x15 blocks of eight natural textures. Accuracies of 72% were achieved with co- occurrence statistics, 65% with augmented correlation statistics, and 94% with texture energy statistics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉熏的红酒完成签到,获得积分10
刚刚
bnm发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
4秒前
叮叮完成签到 ,获得积分10
4秒前
ZiyinChen发布了新的文献求助10
4秒前
4秒前
5秒前
机灵的海莲完成签到,获得积分20
6秒前
6秒前
7秒前
8秒前
李特冷发布了新的文献求助10
8秒前
zlenetr发布了新的文献求助10
9秒前
激情的晓博完成签到,获得积分10
9秒前
CodeCraft应助catbird采纳,获得10
9秒前
chen发布了新的文献求助10
9秒前
斑鸠发布了新的文献求助20
10秒前
dudu发布了新的文献求助30
10秒前
10秒前
gu发布了新的文献求助10
11秒前
希希发布了新的文献求助10
11秒前
小石头完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助150
12秒前
ani发布了新的文献求助10
14秒前
英姑应助Sam十九采纳,获得10
15秒前
15秒前
小马甲应助莫愁采纳,获得10
16秒前
小夏发布了新的文献求助10
16秒前
眯眯眼的忆山完成签到,获得积分10
18秒前
daliu完成签到,获得积分0
19秒前
19秒前
LIJIngcan发布了新的文献求助10
20秒前
小虫虫完成签到,获得积分10
20秒前
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132277
求助须知:如何正确求助?哪些是违规求助? 4333736
关于积分的说明 13502006
捐赠科研通 4170755
什么是DOI,文献DOI怎么找? 2286630
邀请新用户注册赠送积分活动 1287527
关于科研通互助平台的介绍 1228447