已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Clinical Data Mining: a Review

计算机科学 数据挖掘 支持向量机 数据提取 过程(计算) 一般化 数据科学 机器学习 梅德林 数学 政治学 操作系统 数学分析 法学
作者
Gilles Cohen,Adrien Depeursinge,Henning Müller,Rodolphe Meyer,A. Geissbuhler,J. Iavindrasana
出处
期刊:Yearbook of medical informatics [Georg Thieme Verlag]
卷期号:18 (01): 121-133 被引量:89
标识
DOI:10.1055/s-0038-1638651
摘要

Clinical data mining is the application of data mining techniques using clinical data. We review the literature in order to provide a general overview by identifying the status-of-practice and the challenges ahead.The nine data mining steps proposed by Fayyad in 1996 [4] were used as the main themes of the review. MEDLINE was used as primary source and 84 papers were retained based on our inclusion criteria.Clinical data mining has three objectives: understanding the clinical data, assist healthcare professionals, and develop a data analysis methodology suitable for medical data. Classification is the most frequently used data mining function with a predominance of the implementation of Bayesian classifiers, neural networks, and SVMs (Support Vector Machines). A myriad of quantitative performance measures were proposed with a predominance of accuracy, sensitivity, specificity, and ROC curves. The latter are usually associated with qualitative evaluation.Clinical data mining respects its commitment to extracting new and previously unknown knowledge from clinical databases. More efforts are still needed to obtain a wider acceptance from the healthcare professionals and for generalization of the knowledge and reproducibility of its extraction process: better description of variables, systematic report of algorithm parameters including the method to obtain them, use of easy-to-understand models and comparisons of the efficiency of clinical data mining with traditional statistical analyses. More and more data will be available for data miners and they have to develop new methodologies and infrastructures to analyze the increasingly complex medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sci关闭了sci文献求助
1秒前
1秒前
2秒前
javeeen完成签到 ,获得积分10
2秒前
4秒前
5秒前
耍酷玉米完成签到,获得积分10
5秒前
哈哈哈发布了新的文献求助10
6秒前
情怀应助奋斗的从梦采纳,获得10
8秒前
无辜澜发布了新的文献求助10
8秒前
吉他上的蘑菇应助Lida采纳,获得100
9秒前
CATH发布了新的文献求助10
10秒前
11秒前
可爱的函函应助ssk采纳,获得10
11秒前
可爱的函函应助镜小小静采纳,获得10
14秒前
15秒前
17秒前
畅快之柔发布了新的文献求助10
17秒前
19秒前
传奇3应助勤奋友菱采纳,获得10
19秒前
余凌兰完成签到 ,获得积分10
19秒前
无辜澜发布了新的文献求助10
21秒前
24秒前
xkkk发布了新的文献求助30
24秒前
狗宅完成签到 ,获得积分10
24秒前
ssk发布了新的文献求助10
24秒前
CipherSage应助solar@2030采纳,获得10
25秒前
科研通AI5应助chun采纳,获得10
28秒前
28秒前
28秒前
li发布了新的文献求助10
31秒前
无辜澜发布了新的文献求助10
33秒前
33秒前
springwyc发布了新的文献求助10
34秒前
wuyi关注了科研通微信公众号
35秒前
华仔应助li采纳,获得10
35秒前
36秒前
77完成签到,获得积分10
37秒前
37秒前
solar@2030发布了新的文献求助10
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733246
求助须知:如何正确求助?哪些是违规求助? 3277407
关于积分的说明 10002404
捐赠科研通 2993270
什么是DOI,文献DOI怎么找? 1642581
邀请新用户注册赠送积分活动 780542
科研通“疑难数据库(出版商)”最低求助积分说明 748892