Clinical Data Mining: a Review

计算机科学 数据挖掘 支持向量机 数据提取 过程(计算) 一般化 数据科学 机器学习 梅德林 数学 政治学 操作系统 数学分析 法学
作者
Gilles Cohen,Adrien Depeursinge,Henning Müller,Rodolphe Meyer,A. Geissbuhler,J. Iavindrasana
出处
期刊:Yearbook of medical informatics [Georg Thieme Verlag KG]
卷期号:18 (01): 121-133 被引量:89
标识
DOI:10.1055/s-0038-1638651
摘要

Clinical data mining is the application of data mining techniques using clinical data. We review the literature in order to provide a general overview by identifying the status-of-practice and the challenges ahead.The nine data mining steps proposed by Fayyad in 1996 [4] were used as the main themes of the review. MEDLINE was used as primary source and 84 papers were retained based on our inclusion criteria.Clinical data mining has three objectives: understanding the clinical data, assist healthcare professionals, and develop a data analysis methodology suitable for medical data. Classification is the most frequently used data mining function with a predominance of the implementation of Bayesian classifiers, neural networks, and SVMs (Support Vector Machines). A myriad of quantitative performance measures were proposed with a predominance of accuracy, sensitivity, specificity, and ROC curves. The latter are usually associated with qualitative evaluation.Clinical data mining respects its commitment to extracting new and previously unknown knowledge from clinical databases. More efforts are still needed to obtain a wider acceptance from the healthcare professionals and for generalization of the knowledge and reproducibility of its extraction process: better description of variables, systematic report of algorithm parameters including the method to obtain them, use of easy-to-understand models and comparisons of the efficiency of clinical data mining with traditional statistical analyses. More and more data will be available for data miners and they have to develop new methodologies and infrastructures to analyze the increasingly complex medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大月发布了新的文献求助10
1秒前
1秒前
xiaou完成签到,获得积分10
1秒前
苏卿应助lizhi采纳,获得10
1秒前
TL完成签到,获得积分10
2秒前
蒋中豪完成签到 ,获得积分10
2秒前
黑黑小能手完成签到,获得积分20
3秒前
丰富芷荷完成签到,获得积分10
4秒前
FJM完成签到,获得积分10
4秒前
含蓄的明雪应助研友_LXOWx8采纳,获得10
4秒前
儒雅从筠完成签到,获得积分10
5秒前
海带拳大力士完成签到,获得积分10
6秒前
lulu完成签到,获得积分10
6秒前
丹丹完成签到,获得积分10
8秒前
10秒前
风诺儿完成签到,获得积分10
10秒前
ping777755完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
pb发布了新的文献求助10
15秒前
Abby完成签到 ,获得积分10
16秒前
16秒前
田様应助成佳木采纳,获得10
17秒前
一方通行发布了新的文献求助10
18秒前
19秒前
sunnyhhh完成签到,获得积分10
19秒前
哎嘿应助刘欢采纳,获得10
20秒前
小蘑菇应助刘欢采纳,获得10
20秒前
快乐应助刘欢采纳,获得10
20秒前
搜集达人应助lemon采纳,获得30
21秒前
隐形曼青应助zhang123采纳,获得30
24秒前
wu发布了新的文献求助10
25秒前
25秒前
樱花草完成签到,获得积分10
27秒前
27秒前
qin希望应助twn采纳,获得10
27秒前
kaxif完成签到,获得积分10
28秒前
帆帆完成签到,获得积分10
29秒前
Bruce完成签到,获得积分10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155971
求助须知:如何正确求助?哪些是违规求助? 2807318
关于积分的说明 7872715
捐赠科研通 2465696
什么是DOI,文献DOI怎么找? 1312291
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905