控制理论(社会学)
有效载荷(计算)
方案(数学)
计算机科学
控制工程
人工神经网络
机器人
自适应控制
补偿(心理学)
机械臂
基础(线性代数)
工程类
控制(管理)
数学
人工智能
计算机网络
心理学
精神分析
数学分析
网络数据包
几何学
作者
S.M. Ziauddin,A.M.S. Zalzala
摘要
This report proposes a decentralised compensation scheme for uncertainties and modelling errors of robotic manipulators. The scheme employs a central decoupler and independent joint neural network controllers. Recursive Newton Euler formulas are used to decouple robot dynamics to obtain a set of equations in terms of each joint's input and output. To identify and suppress the effects of uncertainties associated with the model, each joint is controlled separately by Gaussian radial basis function network controllers using direct adaptive techniques. The effectiveness of the proposed adaptive control scheme is demonstrated by controlling the three primary joints of PUMA 560. Simulation results show that this control scheme can achieve fast and precise robot motion control under substantial payload variations.
科研通智能强力驱动
Strongly Powered by AbleSci AI