作者
Anand Kumar Mishra,Pankhuri Gupta,Rattan Lal,Sunita Singh Dhawan
摘要
Mentha arvensis L. (corn mint) is well known for the production of menthol, a used commodity in flavouring industries, and provides natural fragrances. Glandular trichomes are responsible for producing specific secondary metabolites in vascular plants having species chemistry. Ten cultivars/varieties of M. arvensis , namely, Saksham, Kosi, Himalaya, Gomti, Sambhav, Kalka, Damroo, Kushal, and Shivalik, were used to study the developmental regulation of trichomes, essential oil yield, chemical constituents of essential oil and morphological parameters were estimated with gene expression using a randomized block design. Simultaneously, RNA sequence-based transcriptome analysis was done to reveal the transcription factors and differential gene analysis, which are responsible for the biosynthesis of essential oil as well as trichome development. Plant growth showed the maximum transition between 35 and 50 days stage, while essential oil and its metabolite bioconversion was observed in between 70 and 100 days stage. Glandular trichomes were maximally increased between 50, 70 days, and 100 days stage in var. Kosi followed by var. Saryu which has rapid growth in oil content. Menthol reductase activity was found to be a regulatory element during development, as it follows the inverse trend of menthol content and leads to menthol accumulation in subcuticular spaces. Transcriptional factors, cog, and nonredundant novel genes were identified. The composition of mintessential oils is regulated at multiple levels, including transcript abundance, catalytic properties of enzyme catalysts, and cell type-specific epigenetic processes. • Comparative morphological data of different varieties in Mentha arvensis divulge herbage forming ability of crop. • Trichome analysis in Mentha arvensis in relevance to essential oil yield elaborates essential oil yield potential in selected varieties. • Comparative transcriptome analysis in two divergent life stages provides differential Unigenes and Transcription factor and biosynthesis related gene expression. • Gene expression analysis reports crucial activity of Menthone reductase during development for accumulation of menthol.