CyCU-Net: Cycle-Consistency Unmixing Network by Learning Cascaded Autoencoders

计算机科学 一致性(知识库) 自编码 高光谱成像 像素 人工智能 数据一致性 过程(计算) 深度学习 模式识别(心理学) 迭代重建 网(多面体) 机器学习 数学 分布式计算 操作系统 几何学
作者
Lianru Gao,Zhu Han,Danfeng Hong,Bing Zhang,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:130
标识
DOI:10.1109/tgrs.2021.3064958
摘要

In recent years, deep learning (DL) has attracted increasing attention in hyperspectral unmixing (HU) applications due to its powerful learning and data fitting ability. The autoencoder (AE) framework, as an unmixing baseline network, achieves good performance in HU by automatically learning low-dimensional embeddings and reconstructing data. Nevertheless, the conventional AE-based architecture, which focuses more on the pixel-level reconstruction loss, tends to lose some significant detailed information of certain materials (e.g., material-related properties) in the reconstruction process. Therefore, inspired by the perception mechanism, we propose a cycle-consistency unmixing network, called CyCU-Net, by learning two cascaded AEs in an end-to-end fashion, to enhance the unmixing performance more effectively. CyCU-Net is capable of reducing the detailed and material-related information loss in the process of reconstruction by relaxing the original pixel-level reconstruction assumption to cycle consistency dominated by the cascaded AEs. More specifically, cycle consistency can be achieved by a newly proposed self-perception loss, which consists of two spectral reconstruction terms and one abundance reconstruction term. By taking advantage of the self-perception loss in the network, the high-level semantic information can be well preserved in the unmixing process. Moreover, we investigate the performance gain of CyCU-Net with extensive ablation studies. Experimental results on one synthetic and three real hyperspectral data sets demonstrate the effectiveness and competitiveness of the proposed CyCU-Net in comparison with several state-of-the-art unmixing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangmingrui发布了新的文献求助10
刚刚
Cheryy发布了新的文献求助10
1秒前
zhangjfan发布了新的文献求助10
1秒前
curtain发布了新的文献求助10
1秒前
lyh完成签到,获得积分10
1秒前
南海牧鲸人完成签到,获得积分10
2秒前
NN应助One采纳,获得10
2秒前
lcm发布了新的文献求助10
3秒前
3秒前
自然的盈完成签到,获得积分10
3秒前
3秒前
4秒前
zhengzehong完成签到,获得积分10
4秒前
WGQ发布了新的文献求助10
5秒前
Jiang发布了新的文献求助20
5秒前
5秒前
5秒前
汉堡包应助Genius采纳,获得10
6秒前
jichups完成签到,获得积分10
6秒前
ceeray23应助YWJ采纳,获得10
6秒前
6秒前
5476完成签到,获得积分10
6秒前
在下风爵完成签到,获得积分10
7秒前
娜娜完成签到,获得积分10
8秒前
我是老大应助131343采纳,获得10
8秒前
8秒前
隐形曼青应助搞怪的易槐采纳,获得10
8秒前
Ehgnix应助陈杰采纳,获得10
9秒前
明理楷瑞发布了新的文献求助10
9秒前
LZQ应助迷你的白易采纳,获得10
9秒前
9秒前
xinyu完成签到,获得积分10
10秒前
白冰完成签到 ,获得积分20
10秒前
小康学弟发布了新的文献求助30
10秒前
所所应助111采纳,获得10
10秒前
11秒前
11秒前
张xingxing发布了新的文献求助40
11秒前
IVANXIE完成签到,获得积分10
11秒前
清脆的霸发布了新的文献求助10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755745
求助须知:如何正确求助?哪些是违规求助? 3299039
关于积分的说明 10108508
捐赠科研通 3013695
什么是DOI,文献DOI怎么找? 1655225
邀请新用户注册赠送积分活动 789660
科研通“疑难数据库(出版商)”最低求助积分说明 753345